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Metamorphic mechanisms form a class of mechanisms that has
the facilities to change configuration from one kind to another
with a resultant change in the number of effective links and mo-
bility of movement. This paper develops formal matrix operations
to describe the distinct topology of configurations found in a
metamorphic mechanism and to complete transformation between
them. A new way is hence introduced for modeling topological
changes of metamorphic mechanisms in general. It introduces a
new elimination E-elementary matrix together with a
U-elementary matrix to form an EU-elementary matrix operation
to produce the configuration transformation. The use of these ma-
trix operations is demonstrated in both spherical and spatial
metamorphic mechanisms, the mechanistic models taken from the
industrial packaging operations of carton folding manipulation
that stimulated this study. �DOI: 10.1115/1.1866159�

Keywords: Metamorphic Mechanism, Self-adaptable
Mechanisms, Configuration, Transformation, Adjacency Matrix,
Matrix Operation, Folding Manipulation, Topological Changes,
Carton Packaging

1 A Metamorphic Mechanism and Its Topological
Change

The essence of this paper was originally centered on a formal-
ism for machine manipulation operations in folding a decorative
carton in the context of product packaging �1,2�. A stiff, paneled
carton with its creased hinges can be described �3–6� as a linkage
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mechanism �7–11�, which in essence is just as relevant to any
mechanism of a metamorphic kind, those with kinematic structure
that changes.

An example of a mechanism that can be metamorphic �6� is a
five-bar spherical linkage: one with five links joined in a loop by
revolute joints whose axes are concurrent. The mechanism has
two degrees of freedom and can change its topological configura-
tions to one degree of freedom. The mechanism is also highly
collapsible; it changes to a flattened configuration and has the
property of adaptability �12,13�. A fully operable configuration is
shown in Fig. 1.

A new configuration occurs when joint S” 4,5 lies in the plane
containing S” 1,5 and S” 3,4, where link 4 overlaps link 5, which re-
sults in a topological change. At that position they may become
self-attached or fixed by a device to become one link. The mecha-
nism then becomes a four-bar spherical linkage as in Fig. 2, with
joints S” 1,2, S” 2,3, S” 4,5 and S” 1,5, and the number of degrees of free-
dom is reduced to one.

2 Matrix Operations in Representing the Topological
Changes

The topological structure �14–16� and link connectivity of a
mechanism can be represented in a matrix form. In the matrix
each link of the mechanism in its current configuration is identi-
fied by a number from 1 to n. The rows and columns of the matrix
take these numbers in sequence. An entry of a connectivity be-
tween the ith link and jth link is given as element �i , j� in an
adjacency matrix. When two links are connected, the entry of the
corresponding row and column is given as 1. When two links are
disconnected, the entry of the corresponding row and column is
given as 0. This adjacency matrix defines a topological configu-
ration of a mechanism during motion. The adjacency matrix of the
five-bar configuration of the metamorphic mechanism in Fig. 1 is

A0 = �
0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0
� . �1�

The connectivity changes into a four-bar configuration as in Fig. 2
when links 4 and 5 of the five-bar configuration are attached to-
gether. For this changed topological configuration the adjacency
matrix becomes

A1 = �
0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
� . �2�

As expected, this results in the change of both matrix elements
and matrix order.

A topological change of the mechanism represented in these

two matrices thus takes place. This topological change can be
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derived from an analytical way using an EU-elementary matrix
operation on the initial adjacency matrix, A0, to generate a new
adjacency matrix, A1.

The EU-elementary matrix operation consists of the steps of
applying a Ui,j-elementary matrix �17� operation and an elimina-
tion Ej-elementary matrix operation used in pairs. The function of
the elementary matrix Ui,j in Eqs. �3� and �4� is to add the jth row
to the ith row of an adjacency matrix when premultiplying an
adjacency matrix, and it is embedded in the subscript. Postmulti-
plying the transpose of the elementary matrix adds the jth column
to the ith column of the adjacency matrix. The new elementary
matrix Ej in Eqs. �3� and �4� is introduced to perform the function
of eliminating the jth row of an adjacency matrix when it is pre-
multiplied to the adjacency matrix and eliminating the jth column
when its transpose is postmultiplied to the adjacency matrix.
Hence, the connectivity is passed on and the number of links
reduces. The use of these two matrices results in the EU-
elementary matrix operation that performs the required configura-
tion transformation. The matrix operation uses modulu-2 arith-
metic, sometimes known as exclusive-or arithmetic �18�.

For the transformation of the five-bar configuration �19� into its
four-bar configuration, an elementary matrix operation gives

A1 = �E5U4,5�A0�E5U4,5�T, �3�
where

Fig. 1 Five-bar spherical metamorphic mechanism

Fig. 2 Configuration state when a five-bar linkage configura-

tion changes to a four-bar linkage configuration

838 / Vol. 127, JULY 2005

: https://mechanicaldesign.asmedigitalcollection.asme.org on 06/19/2019 Terms o
U4,5 = �
1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 1

0 0 0 0 1
� and E5 = �I4 0� = �

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
� .

�4�
The above matrix operation in Eq. �3� can be decomposed into
two steps. The first step is to apply the U-elementary matrix op-
eration passing the connectivity of link 5 to link 4. This is com-
pleted by the following matrix operation:

A1� = U4,5A0U4,5
T = �

0 1 0 1 1

1 0 1 0 0

0 1 0 1 0

1 0 1 0 1

1 0 0 1 0
� . �5�

The second step is to apply the E-elementary matrix operation to
remove link 5 which is annexed to link 4. This is completed by the
following matrix operation:

A1 = E5A1�E5
T = �

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0
� . �6�

Hence, the four-bar configuration is obtained as A1 from the
above decomposed elementary matrix operations. The above illus-
trative EU-elementary matrix operation can be extended to a com-
plex metamorphic mechanism.

3 Topological-Configuration Transformation of a Spa-
tial Metamorphic Mechanism and its Structural Evolu-
tion

A spatial mechanism with nine joints and ten links is shown in
Fig. 3. The mechanism was extracted from a cardboard gift carton
having a hexahedral form with triangular faces when closed �20�.

The precut and creased cardboard profile is initially presented
in a developed and flat form. It appears as three squares attached
in an “L” formation with four fixing flaps along certain edges of
the squares joined with creases which also exist along the diago-
nals of squares. The six panels from the three squares and four
flaps are labeled from 1 to 10 in Fig. 4.

Taking the crease lines as revolute joints and panels as mecha-
nism links �3–5�, an equivalent spatial mechanism �21� can be
produced and superimposed on the carton as Fig. 4 in which S” i,j
stands for a joint axis between panels i and j. The carton is to be

Fig. 3 A spatial mechanism
erected from its initially flat, cut, and creased form �1� to be a
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constrained hexahedron. The topological change resulting from
carton folding may produce a number of potentially useful mecha-
nism structures.

This open configuration can be expressed in its adjacency ma-
trix form as follows:

A0c = �
0 1 0 0 0 0 1 0 0 0

1 0 1 0 0 1 0 0 0 0

0 1 0 1 1 0 0 0 0 0

0 0 1 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0

� . �7�

The manipulation of this equivalent mechanism generates a meta-
morphic mechanism with four distinct topological configurations,
resulting in four different kinematic chains with different mobili-
ties. Transformation relates these topological changes and predicts
the new topological configurations. The initial configuration is in
Fig. 4, where a general mechanism is there with a mobility of 9.
This mobility is determined using the formulas in Ref. �6� based
on the Grübler–Kutzbach criterion �22� integrated by Waldron’s
modification �23� with the order of the screw system �24–27�. The
order of the screw system in this case is 6. A metamorphic mecha-
nism can then be produced in the following manipulation by par-
tially erecting the carton when folding panels, 1, 2, 3, 4, and 10
about the creases. When the physical limit is reached �28�, panel
10 is attached to panel 1. This operation produces a partially
folded carton as in Fig. 5.

Fig. 4 Equivalent spatial mechanism superimposed on a
carton
Fig. 5 Partially folded carton
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The metamorphic mechanism can then be formed with a spheri-
cal four-bar linkage formed with S” 1,2, S” 2,3, S” 3,4 and S” 4,10 as high-
lighted attached with three serial kinematic chains in Fig. 6. The
overall mobility is 6 in a similar way to the mobility discussion of
the previous configuration.

Applying the EU-elementary matrix operation to the original
matrix A0c as �E10U1,10�A0c�E10U1,10�T, this configuration trans-
formation can be completed with a resultant adjacency matrix
corresponding to the configuration in Fig. 6 as

A1c = �
0 1 0 1 0 0 1 0 0

1 0 1 0 0 1 0 0 0

0 1 0 1 1 0 0 0 0

1 0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 1 0

� . �8�

The next topological configuration appears when the manipula-
tion entails the folding of panel 6 to be attached to panel 5 until
the physical limit is reached. Hence, the mechanism changes its
configuration to a hexahedral half-structure with mobility 3. This
configuration transformation can be represented by an EU-
elementary matrix operation, E5U6,5A1c�E5U6,5�T, on the previous
adjacency matrix A1c. The adjacency matrix corresponding to this
configuration of mobility 3 can hence be obtained from the opera-
tion as

A2c = �
0 1 0 1 0 1 0 0

1 0 1 0 1 0 0 0

0 1 0 1 1 0 0 0

1 0 1 0 0 0 0 0

0 1 1 0 0 0 1 0

1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1

0 0 0 0 0 0 1 0

� . �9�

The third topological configuration occurs when the manipula-
tion entails the folding of panel 8 to form a hexahedral structure
and fixes panel 9 to 4 with joint S” 1,7 available to operate. The
mobility is 1.

This configuration transformation can be represented by an EU-
elementary matrix operation on A2c as E8U4,8A2c�E8U4,8�T. The
adjacency matrix corresponding to this configuration is obtained

Fig. 6 A spherical four-bar linkage with serial kinematic
chains
as
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A3c = �
0 1 0 1 0 1 1

1 0 1 0 1 0 0

0 1 0 1 1 0 0

1 0 1 0 0 0 1

0 1 1 0 0 0 1

1 0 0 0 0 0 0

1 0 0 1 1 0 0

� . �10�

The final topological configuration is reached when manipulat-
ing joint S” 1,7 to attach panel 7 to panel 8; this generates a structure
and the carton manipulation is complete. Its adjacency matrix is a
result of an EU-elementary matrix operation E7U8,7A3c�E7U8,7�T

as

A4c = �
0 1 0 1 0 1

1 0 1 0 1 0

0 1 0 1 1 0

1 0 1 0 0 1

0 1 1 0 0 1

1 0 0 1 1 0

� . �11�

The step-by-step operation to transform the initial topological
configuration represented by the 10�10 matrix A0c to the final
topological configuration represented by the 6�6 matrix A4c can
be summarized by the set of matrix operations

A4c = �E7U8,7E8U4,8E5U6,5E10U1,10�

� A0,c�E7U8,7E8U4,8E5U6,5E10U1,10�T. �12�

4 Conclusions
This paper revealed the intrinsic relationship between topologi-

cal configurations of metamorphic mechanisms and proposed an
analytical way to represent these configurations and facilitate their
transformation.

Representing a configuration in the form of topological graph
and adjacency matrix, the topological change was modeled by
applying matrix transformation on an initial adjacency matrix.
This transformation was then decomposed into a number of
equivalent EU-elementary matrix operations involving the
modulu-2 arithmetic and a new E-elementary matrix for eliminat-
ing redundant rows and columns. This leads to a matrix represen-
tation of the topological changes of metamorphic mechanisms.

The paper demonstrated the matrix operations in topological
changes of a spatial metamorphic mechanism. Configuration
changes were described formally as a topological change with a
set of matrix operations rigorously laying down procedural infor-
mation for operators, and are intelligible by machines.
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