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Mobility in IVIetamorphic 
IVIechanisms of Foldable/ 
Erectable Kinds 
This paper looks at a class of mechanisms that change structure when erected or folded. 
The class includes a variety of artefacts and decorative gifts and boxes comprised of flat 
card creased to enable the folding or unfolding of a structure. Such a structure admits 
kinematic study in keeping with theory of mechanisms when the creases are treated as 
hinges joining card and paper panels treated as links. New horizons have been brought 
up in the use and mechanised manufacture of mechanisms of this kind. Here typical types 
are described in terms of their fundamental parts and their equivalent mechanisms. Screw 
sy.'item theory is brought into the analysis of mechanisms of these kinds, particularly those 
containing multiple loops. Different geometry and system combinations are used for the 
study of mobility and kinematics making use of the result from the equivalent screw 
systems. 

Introduction 

A mechanism is most commonly characterised by its function as 
part of a machine or mechanical arrangement that transforms an 
input motion or a force into another. If, alternatively, a mechanism 
has the ability to have its structure transformed from one kind to 
another then another class of mechanism emerges, one whose 
primary function may be just to change structure. 

Amongst these new developments is a group of devices or 
arrangements that can be described as mechanisms whose number, 
the total of all effective links, changes as they move from one 
configuration to another or a singular condition in geometry occurs 
that makes it behave differently. We refer to this group of mech­
anisms as metamorphic. The mechanism may start as an open 
chain or in a folded (plicated) chain loop to be subsequently 
erected as a structure. 

New interest areas around such mechanisms are growing. For 
example the study of deployable mechanisms has applications in 
space technology that requires a highly collapsible and portable 
mechanism to be carried in a spacecraft and expandable for use 
either for large antenna structures (Costabile et al., 1996), for ramp 
assembly (Spence and Sword, 1996) or for the solar array paddle 
(Kuramasu et al., 1995). New deployable structure has been found 
in the study of truss structures (Takamatsu and Onoda, 1991). A so 
called smart fractal structure and mechanisms are recommended in 
robot manipulators (Shahnipoor, 1993), and sequential logic 
(Chew and Ho, 1996) was used for the analysis of the mechanisms. 
A recent study by Pellegrino (1996) focused on one combination 
of mechanisms and presented a potential application of this kind of 
mechanisms. 

Less obviously related to the above examples is another class 
typically found in artefacts and fancy gift packs. A list of this kind 
of application can readily be drawn, including, for example Chi­
nese lanterns, paper folding in Christmas decorations, and card 
boxes for used in packaging a various of products. Some exotic 
and innovative forms of the latter represent a technological chal­
lenge in producing them by machine. This sets up the need to 
describe the process in quantifiable kinematic terms. This would 
also open an avenue for mechanism study leading to innovation in 
the design of artefacts and packaging. 

We usually conceive of mechanisms to be made of ostensibly 
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rigid elements but use relatively flexible card or paper to model 
and study them. Cundy and RoUett (1951) went into (detail on how 
to make such models. Conversely the artefacts, fancy gift packs 
and paper foldings that were referred to have not been studied from 
mechanism theory point of view, 

This paper focuses on this new manifestation of a mechanism of 
a metamorphic kind with particular reference to cut, creased and 
folded paper and card. Screw theory is used to analyse mobility or 
structure of these metamorphic mechanisms. The screw theory is 
also used to classify the mechanisms and to produce the charac­
teristics of the new mechanisms from some classical ones. New 
families of the mechanism of this kind are presented in the study 
of a mechanism of this kind. The study presents a coherent 
correlation between a mechanism and its decorative applications. 

Mechanism Models of Artefacts 
The application of mechanism theory in the study of mobility in 

the artefacts, fancy gift packs and paper foldings relies on there 
being an equivalent mechanism or graph representation. The group 
of interest is characterised by the fact that they are produced from 
card or paper that is cut and creased and sometimes prepared with 
fixing flaps or integral locking devices. They are supplied in a 
plane flat condition or, very often, folded flat. In general the paper 
creases act as joints and paper panels act as linkages that allow a 
mechanism representation (Dai and Rees Jones, 1997a). 

A typical example of this kind of metamorphic mechanism is the 
hexahedron represented Fig. 1. It happens to make a rather nice 
Christmas tree decoration, whether in coloured card or in textiles, 
as might be the wont of quilters. In its erect form it appears as a 
polyhedron with six isosceles triangular faces. 

The decoration prior to erection is presented in a flat card form 
with three squares joined either in L form or serially in line. Each 
square is creased along a diagonal to form the six triangular panels 
in Fig. 2. In this case there is some assembly to do. 

The erection process involves rotating paper panels about the 
crease lines. The combination of crease lines and panels is analo­
gous to a logical combination of revolute joints and links and 
presents a mechanism although manifestly in the guise of a dec­
oration. This can be regarded as an equivalent mechanism in Fig. 
3(a) corresponding to the partially-erect structure in Fig. 3(i>). 
Several phases appear in the operation. Each phase of erection is 
completed by fixing a panel to a flap, perhaps using adhesives such 
as hot melts. The equivalent metamorphic mechanism changes its 
link numbers and connectivity in each of the phases. Starting from 

Journal of Mechanical Design Copyright © 1999 by ASME SEPTEMBER 1999, Vol. 121 / 375 

Downloaded 25 Apr 2008 to 137.73.10.66. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

mailto:101665.3311@compuserve.com


o—o—o—0-—o—o 

Fig. 1 The hexahedron 

Fig. 3(fc) which is the first phase of the mechanism, rotating paper 
panels, fixing flap 4' with panel 1, the two links make a union. The 
corresponding metamorphic mechanism reduces its link number. 
In this second phase, the mechanism makes a spherical four-bar 
linkage with joint (1, 2), (2, 3), (3, 4) and (4, 1) incorporated with 
another two joints. The rest of the joints are connected and free to 
move. The next phase appears when fixing flap 3' to panel 5. The 
mechanism makes its third phase which becomes an hexahedral 
shell structure with some free joints. The paper fold ends up in a 

: 7 ^ 

/ I \ 
/ I \ 

\ 

i ^ 

\ 

Fig. 2 A flat pre-creased card before its erect form 

Fig. 3(a) An equivalent mechanism 

4' 

Fig. 3{b) IHalf-erect decoration 
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Fig. 4(a) Graph representation prior to erect 

4(6') 

6(1') 5(3') 
Fig. i(b) Graph representation after erection 

complete structure. It in fact changes the number of links and 
connectivity of the mechanism. The mechanism becomes a stiff 
structure. 

A graph representation gives a good illustration of the change of 
structure of the mechanism. The first and final phase of this 
metamorphic mechanism are shown in Fig. 4(a) and 4(b), which 
give graph representations prior to and after erection. The nodes in 
the graph represent panels of the decoration and lines represent 
creases. The graph after erection is given in Fig. 4(b), whose 
corresponding picture is given in Fig. 1. The graph is composed of 
six nodes representing the six isosceles triangular faces. 

Another example usually starts in a folded flat form, reminiscent 
of a concertina, which generally implies that some panels have 
already been joined together. This metamorphic mechanism ap­
pears in the Chinese lantern. The lantern erects in a near cylindrical 
form and collapses practically flat. The metamorphosis from flat to 
erect form is enabled by carefully laid creases in paper defining the 
edges or joins of a large number of isosceles triangles as in Fig. 5. 

Looking closely at one unit of the lantern, the unit structure can 
be split into two symmetric loops as in Fig. 6. The loop contains 

Fig, 5 A Chinese lantern 
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Fig. 6 A loop of half a unit of Chinese lantern 

one central panel in the shape of an isosceles triangle defined by 
three creases and attached with three other isosceles-triangular 
panels. The creases dominate the folding method and hence the 
shape of a decoration; they act as axes of revolute joints as in Fig. 
7 that allow rotation of two panels about the line to a desirable 
position. All crease lines are constrained by panels acting as links 
between revolute joints. 

A complete unit of two loops is in Fig. 8 with its equivalent 
mechanism. The mechanism is a spatial one that is highly expand­
able and collapsible, as the lantern changes its shape from a folded 
configuration to a fractal deploy able structure (Shahnipoor, 1993) 
in the form of an erect lantern. 

A special feature is associated with this kind of metamorphic 
mechanism. It happens that they are all revolute joints and the 
neighbouring axes are coplanar. Hence, the screws (Brand, 1947) 
that represent the axes of joints are zero-pitch ones, and the scalar 
products of neighbouring screws are zeros. 

Mobility in Metamorphic Mechanisms 
The complex nature of the metamorphic mechanism represent­

ing these artefacts and fancy packages complicates the study of 
their mobility, particular in forms of where multiple loops and 
innovative connections occur. Most of the metamorphic mecha­
nisms do not appear in a conventional way but take a combination 
of several types of mechanisms. However, the mechanisms can be 
represented as equivalent screw systems (Hunt, 1978). The mobil­
ity analysis would then rely on the study (Hunt, 1967) of these 
mechanisms in terras of their equivalent screw systems. 

The constraint criterion for spatial mechanisms can be stated as 
a Kutzbach-Grubler criterion (Kutzback, 1937; Hunt, 1959; Suh 
and Radcliffe, 1978) that is dependent on the type of pair and its 
constraint. It is stated as 

F = / > ( n - D - 2 ; PiCi (1) 

where n is the number of links, p, the number of pairs of type 
(', and c, the degree of constraint (degree of freedom lost) at a 
pair of type i. Scalar i> is 6 in the general spatial case and 3 in 
the planar case. It has been recognised that the above two values 
of b do not hold for many mechanisms that may be constructed. 
Ressner (1961) and others introduced a given portion of the 
mechanism to the appropriate value ofb. Boden (1961) split the 
criterion in two parts and demonstrated that some mechanisms 
may be dealt with by considering parts of them to obey the 

Fig. 8 Mechanism equivalent of a unit of the lantern 

planar form and the remainder to obey the spatial form. To a 
point of generality, Waldron (1966, 1967) and Hunt (1978, 
1967) extended the formula by taking account of a general 
assessment of value of b in terms of the order of an equivalent 
screw system in a mechanism. 

Hence the criterion corresponding to the order of a screw system 
in a mechanism is as follows 

F=hin-j- l) + '2f. (2) 

where / is the number of joints and/, the degree of freedom at the 
ith joint. The order of a screw system is now incorporated in the 
formula as b. For an equivalent screw system of order four, the 
Kutzbach-Grubler criterion holds by taking the coefficient b as 
four. 

If the metamorphic mechanism has revolute joints only, which 
happens in most cases particularly in most applications with crease 
lines as joints, the formula evolves 

F=b{n-j- l)+j (3) 

If a mechanism contains a variety of multiple loop linkages, the 
criterion holds as long as the equivalent screw system of every 
loop of the multiple loop linkage has the same order [18], b. When 
the mechanism contains multiple loop linkages plus open loop 
linkages, the constraint criterion becomes 

F=F, + F„ = h{n-j~l)+j+j„ (4) 

where F,, is the mobility in the close loop, F„ the mobility in the 
open loop, j„ is number of joints in the open loop. This reflects 
later in the study of a mechanism that combines parallel and serial 
mechanisms. 

In the mobility analysis of the hexahedral Christmas tree deco­
ration shown in Figs. 1, 2, 3(a) and 3(b), we see that the equivalent 
mechanism has ten links and nine joints. Six main links, 1, . . . , 6, 
and five main joints (1, 2), . . . , (5, 6), make a metamorphic 
mechanism of two loops based on intersecting axes. Since the 
equivalent screw systems of the two loops have the same order of 
3, mobility coefficient b takes 3. The rest four joints (1, !')> (3, 3'), 
(4, 4'), (6, 6') form four open loops, the Eq. (4) can be used as 
follows 

F = 3 ( 6 - 5 - 1 ) + 5-1-4 = (5) 

The mechanism changes its phase when fixing link 4' to link 1. As 
discussed in previous section, it becomes a spherical four-bar 
linkage incorporated with another two links plus three open loops 
in this second phase. The mobility is 

3(6 1) + 6 + 3 (6) 

Fig. 7 An equivalent mechanism of a loop in half a unit of the lantern 

The next motion changes the metamorphic mechanism to another 
phase and mobility reduces to 3. Table 1 shows the progression 
from each phase to the next and the resulting mobility. 
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Table 1 Mobility changes with phases of a hexahedral equivalent mech­
anism 

Phase 

1 

2 

3 

4 

5 

Desirable movement 

Free movement 

Fix link 4' to 1 

Fix link 3' to 5 

Fix link 6' to 4 

Fix link r to 6 

Mechanism appeared 

General metamorphic mechanism 

Spherical 4-bar incorporated 

Hexahedral half-structure 

Structure with one free joint 

Structure 

Mobility 

9 

6 

3 

I 

0 

Further, a different order of fixing movement produces different 
phases of the metamorphic mechanism but same mobilitiy in each 
phase. If the second phase above is to fix flap 3' to panel 5, the 
three links of 2, 3, 5 become a triangular pyramid structure with 
rest joints free to move. The mobility is 6 from Eq. (4). Hence 
Table 2 can be given. 

When the decoration reaches its final phase, the number of links 
reduces to 6 from 10, there is no relative motion between links and 
the mechanism becomes a complete structure. 

Now we consider the mobility of a Chinese lantern, in Fig. 5. 
Referring to an equivalent mechanism in a loop of half a unit of the 
lantern in Fig. 7, the screw axes to construct three joints are on the 
same plane and hence form a three-system. The mobility is three 
as 

F = 3(4 - 3 - 1) -I- 3 = 3 (7) 

Consider a complete unit in Fig. 8 that takes the stack of two loops, 
the two equivalent screw systems for two loops have the same 
order of three, the mobility is given as follows 

F = 3(6 - 5 - 1) + 5 = 5 (8) 

The study is then extended to one layer of the lantern and considers 
different configurations. It is equivalent to a parallel mechanism 
(Rees Jones, 1987). The mobility varies with the number of units 
in the mechanism. The equivalent screw system for each unit is the 
same and has the same order. 

The mobility of a layer comprising three units, represented by 
the mechanism in Fig. 9(a), is 

f = 3(4 X 3 - 5 X 3 - 1 ) + 5 X 3 = 3 (9) 

Similarly, the mobility of a layer of four units in Fig. 9{b) is 5. The 
mobility of a single-layer lantern constructed with five units is 7. 
A pattern of the mobility of such a mechanism with one layer and 
multiple units can hence be given. Start from mobility of three for 
a lantern of one layer with three units, each incremental unit adds 
mobility two to the existing mobility. A formula can be given 

F | = 3 -f 2(M - 3) (10) 

Table 2 Change of the order of movement of the hexahedral equivalent 
mechanism 

Phase 

1 

2 

3 

4 

5 

Desirable movement 

Free movement 

Fix link 3' to 5 

Fix link 1' to 6 

Fix link 4' to 1 

Fix link 6' to 4 

Mechanism appeared 

General metamorphic mechanism 

Pyramid with free joints 

Hexahedral half-,structure 

Structure with one free joint 

Structure 

Mobility 

9 

6 

3 

1 

0 

Fig. 9(a) A layer with three units 

Fig. 9(6) A layer with four units 

where u stands for the number of units of a layer and starts from 
3 in this simplified equation. A lantern constructed in multiple 
layers is a mechanism connecting individual parallel mechanisms 
in serial. A lantern with two layers is shown in Fig. 10(a) and three 
layers in Fig. \Qib). 

A general mobility formula for a lantern with multiple units and 
multiple layers is given as follows 

Fig. 10(a) A lantern mechanism with two layers 
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Fig. 10(i]) A lantern mechanism with three layers 
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Table 3 Mobility of Chinese lantern equivalent mechanism with differ­
ent configurations 

No. of units in a layer 
No, of layers 

1 

2 

3 

3 

3 

9 

15 

W,+il-l)u 

4 

5 

14 

23 

5 

7 

19 

31 

6 

9 

24 

39 

Odd number 

2Fi+H 

3Fi+2« 

F = X (3(4M,- - 5M,. - 1) + 5M,) + 21 «/ (11) 
Fig. 12 A special mechanism equivalent to the box 

where / is the number of layers, u the number of units in a layer. 
The mobility of different layout of lanterns is shown in Table 3. 

A pattern can be seen for the mobility of this kind of mechanism 
in the last column of Table 3. 

The mobility has a clear pattern in terms of the number of layers 
in the mechanism. Each incremental layer adds mobility to the 
existing one by the mobility of one layer and extra mobility the 
same number as the number of units being added. A simplified 
form of Eq. (11) for multiple layer lanterns is 

F,„ = IF, + (/ - 1)M (12) 

Metamorphic Mechanism Based on Parallel Axes 
A commonly found metamorphic mechanism is one in which 

parallel axes dominate the possible motion. It finds its application 
as a cardboard box container with a crash-lock base in Fig. 11. 

The four main panel sections present four links while the four 
parallel creases present four revolute joints to form a main struc­
ture of the box. This equivalent linkage of the main structure is 
attached with a base formed by other four panels and six creases 
which form two extra loops. The mechanism representation of the 
box with its base is presented in Fig. 12, The ten revolute joints 
form a spatial mechanism. 

The corresponding graph representation is presented in Fig. 13. 
The mechanism has three loops that are equivalent to three screw 
systems of order three constructed by the axes of joints (Dai and 
Rees Jones, 1997b). Applying the extended Kutzbach-Grubler 
mobility Eq. (2), the mobility is 

F = 3(8 - 10 - 1) 4- 10 = 1 (13) 

A physical interpretation follows. The three loops are formed by a 
four-bar linkage, two folding sub-mechanisms acting as bulldog 
clips in Fig. 14 at two edges of the four-bar linkage. The mobility 
for each sub-mechanism is one. Hence, the mobility for the whole 
should not be over one. 

Fig. 11 A card box with a crash-lock base 

Journal of Mechanical Design 

Equations can be evolved for each of the loops. The main loop 
equation in Fig. 12 can be written as the sum of the screws 
representing the joint as 

.+ = 0 (14) 

The sub-loops are shown as folding sub-mechanisms similar to 
bulldog clip devices in Fig. 14. The equation for that is given as 

067$67 ~ ^26$26 + ^23*23 + 037$37 

which can be written in a matrix form 

"67*67 ~ L$26 $23 $37] 

''26 

^23 

037 

(15) 

(16) 

The mechanism has two phases, a mechanism phase, and a struc­
ture phase where the mechanism changes its connectivity. It occurs 
when the sub-mechanisms reach a singular position, the number of 
links is reduced by annexing other links and the joints reach their 
limits in the physical constraints. The mechanism becomes over-
constrained with no relative motion. The box becomes a structure 
as in Fig. 15. The corresponding graph is given in Fig. 16. 

Fig. 13 A graph representation 

Fig, 14 A sub-loop of the mechanism 
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Fig. 15 The erect box 

Family of the Metatnorphic Mechanisms Based on Par­
allel Axes 

The above metamorphic mechanism has many variations. A 
typical variation is noticed in a hexagonal card box. The equivalent 
mechanism is shown in Fig. 17. Four loops of linkages are spotted 
comprising four screw systems of order three. The extended mo­
bility equation is used to produce the mobility of the mechanism as 

F = 3(12 - 15 - 1) -H 15 = 3 

The three degrees of freedom are given by the centre joints of the 
three folding devices which are acting as active joints. 

The extended mobility equation is used to produce the mobility 
of the mechanism as 

F= 3(12 - 15 - 1) + 15 = 3 (18) 

The three degrees of freedom are given by the centre joints of the 
three folding devices which are acting as active joints. The kine­
matics equation of the main loop of the six parallel axes is given 
as 

Fig. 16 A corresponding graph) 

Fig. 18 Equivalent mechanism of an octagonal box 

5:$,=o. (19) 

(17) The three sub-loops of folding sub-mechanisms are given as 

$, = B,0,, ;•= 1 , 2 , 3 , (20) 

where Bj is a matrix comprising screw representations of axes of 
joints of the yth folding sub-mechanism. 0y is a vector comprising 
angular displacements of the y'th folding sub-mechanism. In the 
study of this class of mechanisms, Bj is 6 X 3 and ®; is a 
three-element vector. 

When the metamorphic mechanism changes configuration and 
phases, the number of links changes when their sub-mechanisms 
reach their end position. In this position, link number reduces, the 
mechanism becomes rigid with no relative motion. A further 
variation is an octagonal decorative card box. The equivalent 
mechanism is shown in Fig. 18. 

Five screw systems that form five loops of linkage are presented 
as axes of joints. The screw systems have the same order of three. 
Hence the mobihty is 

F = 3 ( 1 6 - 2 0 - 1) -1-20 = 5 (21) 

A- general formula for the family of this kind of metamorphic 
mechanisms can be given as 

F = b{2n - (In + c) - I) + (In + c) 

= b{-c - \) + 2n + c (22) 

where, b is the order of an equivalent screw system, n the number 
of parallel axes equivalent to the edges of the tubloidal card box, 
c the number of folding sub-mechanisms corresponding to the 
number of diagonal creases on the base of the box, and equal to 
n/2. The equation hence becomes 

F = b - 1 + 2« + : 2 (5 - ft) - A (23) 

Since the order of screw systems for this family of metamorphic 
mechanisms is always three, the equation is simplified as follows 

F = n - 3 (24) 

Hence, this family of the mechanism can be extended to many 
variations with the above mobility formula. 

The kinematics equations are 

E $/ = 0, (25) 
Fig. 17 An equivalent mechanism of a hexagonal card box 
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Fig. 19 A flattened configuration of a card box Fig. 21 An equlvaient mechianism of tiaif of the box 

ej%j - Bj®j. j=h (26) 

where m is the number of folding sub-mechanisms. When the 
mechanism becomes a structure in one of its phases the mechanism 
becomes symmetric and erect. All folding sub-mechanisms in 
sub-loops are coplanar. The links of all folding sub-mechanisms 
are annexing to make a union and become rigid. 

There is a comparison between this kind of mechanism and the 
planar mechanism. Removing from the above mechanisms the 
additional spatial parts of those pairs of folding sub-mechanisms, 
the mechanisms become planar ones of four-bar, six-bar and 
eight-bar linkage. The mobility from these planar mechanisms is 
the same as obtained above. In such a vein, the closed folding 
sub-linkages added in the above arrangement do not change the 
mobility of an initial linkage. The effect of it is to limit the linkage 
movement and act as a folding device for a mechanism to be 
expandable and collapsible. Thus the parallel axes in this kind of 
mechanism determine the mobility of the mechanism. The mech­
anism is hence called a metamorphic mechanism based on parallel 
axes. 

Metaraorphic Mechanisms Based on Intersecting Axes 
A typical intersecting axis based metamorphic mechanism is the 

hexahedron and the one in the form of Chinese lantern. More cases 
can be found in Christmas decorations and in some fancy and 
novel card boxes, in particular when the folding process is to wrap 
a content. 

A typical illustration of the application of this kind of mecha­
nism is a boy-scout tent card box. The flattened and operating 
configurations of the card box are shown in Fig. 19. The crease 
lines are arranged with different shapes of panels with no clear 
distinct characteristics of loops and mechanisms. The crease lines 
are treated as axes of screws indicated as line vector D (Dai and 
Rees Jones, 1997c). The half-erect box with these screws is shown 

Fig. 20 IHaif-erect card box with screw axes 
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Fig. 22 Equivaient mechanism of a whole box 

in Fig. 20, where line vector D is given to describe a joint axis as 
a finite twist (Dai and Holland and Kerr, 1995, 1996). 

Starting from the right half of the carton on the symmetry line 
for panel 1-5 and 11-13, an equivalent mechanism is drawn in Fig. 
21. Two loops of the mechanism can be found which construct two 
folding sub-mechanisms. Equivalently, and two screw systems of 
order three are found. 

Hence the mobility taking account of two screw systems of 
order three can be given as 

F = 3 ( 8 - 9 - 1) -K 9 = 3 (27) 

Two folding sub-mechanisms and one joint at the base contribute 
the mobility. The kinematics equation can be given by the two 
folding sub-mechanisms as follows 

ejDj=-Bj&j, j = l , 2 . (28) 

Taking a whole box, the equivalent mechanism is presented in Fig. 
22. Four closed loops with four folding sub-mechanisms are found. 
The screw systems that are equivalent to the loops have the same 
order. Since there are two open loops with three joints, from Eq. 
(4), the mobility of the complete mechanism can be calculated as 

F= (3(13 - 16 - 1) -I- 16) -t- 3 = 7 (29) 

Fig. 23 A corresponding graph representation 
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Fig. 24(a) A phase of mobility two 

Fig. 2A{b) Corresponding configuration of the box 

The mobility hence is seven with the contribution of three from 
open linkages. A corresponding graph representation is given in 
Fig. 23. 

The metamorphic mechanism changes its number of links and 
consequently changes the structure of the mechanism. One phase 
of the mechanism is shown in Fig. 24(a). The corresponding 
configuration of the box is shown in Fig. 24(b). Two degrees of 
freedom are left in this phase. 

The last phase of mechanism is given when number of links 
reduces to 5 as the graph representation in Fig. 25. The mechanism 
becomes a structure. 

11(9,10,12. 
13,14,16) 

Fig. 25 A graph representation of the structure configuration of the 
mechanism 

Conclusion 
A new class of mechanism has been discussed which has in 

particular the ability to change its structure by changing link 
numbers and connectivity. An application of such a metamorphic 
mechanism and its extensions in the sense of being highly expand­
able and collapsible have been discussed in the context of a variety 
of decorations and card boxes. The mechanism and its extensions 
are used for folding and manipulating process in a way equivalent 
to a mechanism device. The mobility and kinematics of the mech­
anism, that is. equivalent to a decorative box, were discussed in 
terms of the order of its equivalent screw system. Two typical 
metamorphic mechanisms based on parallel and intersecting axes 
were discussed being used in most decorations in their manipulat­
ing and folding operation. The discussions and approach of study 
present a new area for kinematics analysis of metamorphic mech­
anisms in application to decorative box design and manipulating 
process, and provide a way in the study of metamorphic mecha­
nisms. 
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