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Exploring multistability in prismatic metamaterials
through local actuation
Agustin Iniguez-Rabago 1, Yun Li 1 & Johannes T.B. Overvelde 1*

Metamaterials are artificial materials that derive their unusual properties from their periodic

architecture. Some metamaterials can deform their internal structure to switch between

different properties. However, the precise control of these deformations remains a challenge,

as these structures often exhibit non-linear mechanical behavior. We introduce a compu-

tational and experimental strategy to explore the folding behavior of a range of 3D prismatic

building blocks that exhibit controllable multifunctionality. By applying local actuation pat-

terns, we are able to explore and visualize their complex mechanical behavior. We find a vast

and discrete set of mechanically stable configurations, that arise from local minima in their

elastic energy. Additionally these building blocks can be assembled into metamaterials that

exhibit similar behavior. The mechanical principles on which the multistable behavior is based

are scale-independent, making our designs candidates for e.g., reconfigurable acoustic wave

guides, microelectronic mechanical systems and energy storage systems.
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In the search for materials with exotic properties, researchers
have recently started to explore the design of their mesoscopic
architecture1. These so-called metamaterials have properties

that arise not only from their chemical composition, but rather
from the interplay between stimuli and the material’s periodic
structure. Examples include auxetic behavior2,3, mechanical
cloaking4 and non-reciprocal response5. A challenging problem
has been to design multifunctional materials, i.e., materials that
can vary their properties. So far, this has been achieved by e.g.,
taking inspiration from origami to create internal structures that
can be reconfigured along a few degrees of freedom6–8. Finding
the structure of such reconfigurable materials is not trivial since
the number of degrees of freedom for a general origami design
grows exponentially9, and typically a general design approach10 is
needed to satisfy required conditions11. Once created, these
materials exhibit highly anisotropic behavior, enabling the change
of their properties by applying locally a range of stimuli including
air pressure12,13, pre-stresses8, and swelling14. However, the
deformed state of these materials becomes dependent on these
stimuli, and once they are removed the material will relax to the
initial configuration.

A way to overcome this dependency is to introduce multi-
stability15–20. This can be achieved by having two or more stable
states that differ in configuration and are separated by significant
energy barriers. Multistability has already been used to create
auxetic2,21 and energy trapping metamaterials22–24 as well as
deployable20,25, morphing26 or crawling27 structures, however,
most of these materials are assembled from 2D building blocks
that can switch between only two stable states. A natural question
to ask is whether 3D building blocks with more than two stable
configurations exist and if they can be used to form multi-
functional metamaterials.

As such, here we study a class of prismatic multistable 3D
building blocks, that are based on polyhedra templates. These
building blocks have previously been studied from an infinitesi-
mal deformation and rigid origami framework6; however here we
assume that these structures can undergo large rotations and
deformations of the faces, making the energy of these structures
highly non-linear and thus significantly more difficult to explore.
To do so, we introduce a numerical method to search for energy
minima that correspond to the stable states of the prismatic
structures. While a complete description of all possible defor-
mations and stable states is not possible due to the large number
of degrees of freedom arising from the elastic description, our
method was designed to closely mimic possible experimental
implementations of locally actuated metamaterials previously
studied for only one prismatic structure12. As a result, we are able
to shine light on the highly multistable behavior that most of
these building blocks exhibit. We start by introducing the design
of the 3D building blocks and a numerical model to simulate their
behavior. We next validate our numerical approach with
centimeter-scale prototypes. In order to gain insight in the pro-
blem, we then visualize the non-linear energy landscape of mul-
tiple prismatic building blocks by applying local actuation to two
hinges. Based on these results, we develop a method to extract all
possible unique actuation patterns, allowing us to efficiently scan
through the energy landscape and find additional stable config-
urations. Finally, we show for a few multistable building blocks
that they can be tessellated to create multistable metamaterials.

Results
Design. The structures investigated here are constructed based on
templates of space-filling tessellations of polyhedra28. Each
polyhedron in the tessellation is used as a basis for a thin-walled
building block, that is constructed by extruding the edges of the

polyhedron in the direction normal to the corresponding face
(Fig. 1). When assuming rigid origami29 (i.e., the structure can
only fold along predefined hinges), some of the building blocks
cannot change shape (Fig. 1a, b), while others can be reconfigured
along specific degrees of freedom (Fig. 1c). Interestingly, for all of
these examples we found additional stable configurations that are
spatially admissible, but that cannot be reached without tem-
porarily deforming the rigid faces (Fig. 1). Under the assumption
of rigid origami, these states correspond to minima in elastic
energy that are separated by infinite high barriers, i.e., they are
topologically isolated30. By allowing the faces to stretch or bend
(i.e., elastic origami)17, we lower the energy barrier such that
moving between local minima becomes kinetically admissible.
Note that under the assumption of elastic origami the structure
has many degrees of freedom, however, some deformations
require significantly less energy than others corresponding to the
degrees of freedom obtained when assuming rigid origami. We
refer to these deformations as soft modes instead of degrees of
freedom. While for some simple origami patterns the energy of
the system can be computed analytically15,16,31, already a generic
degree-four vertex pattern becomes nearly impossible to deci-
pher19. The 3D prismatic structures considered in this study are
constructed from non-flat degree-six, degree-eight, and degree-
ten vertices, and therefore an efficient numerical technique is
needed to explore the energy landscape and discover new stable
states.

To model the thin-walled prismatic structures, as shown in
Fig. 1, we define the elastic energy of the prismatic structures
using linear springs similar to previous work16,17,32 (Methods).
Each hinge is modeled as a torsional spring with stiffness kh, in
which contact is taken into account by constraining the angle
between �π � θ � π. We account for in-plane stretching of
the faces by applying springs with stiffness ks along the edges
and the diagonals32. Bending of the faces is prevented using a set
of constraints (Methods). As such, the relation between face
deformation and hinge bending is specified by the ratio κ ¼ kh=ks.
Note that when simulating origami, deformation of the faces is
typically modeled using bending instead of stretching16. However,
to reduce the computational requirement, the observed deforma-
tion in our prototypes can be approximated using only in-plane
stretching that is the result of the stretchability and flexibility of the
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Fig. 1 Prismatic structures and some of their stable states. The prismatic
structures can be designed by extruding the edges of a convex polyhedron
perpendicular to the faces. The multistable examples shown here are based
on a a truncated tetrahedron, b a truncated cube and c a cuboctahedron.
The additional stable states can only be reached by going over a finite
energy barrier resulting from deformation of the faces of the structure. The
prototypes have square faces of 24mm made from cardboard (0.4 mm
thick) and connected through hinges made from double-sided tape6.
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hinges as observed in experiments20. Additionally, this simplifies
the problem by reducing the number of parameters in the
simulations (i.e., bending stiffness of the faces is not considered).

Compression experiments. We first verify the numerical model
with compression experiments. We performed experiments on a
prismatic structure based on a cuboctahedron, as the shape of two
of the stable states (Fig. 1b) is compatible with the compression
applied along a specific axis (Supplementary Movie 1). Note that
this compression does not undergo any deformation along the
three soft modes that this structure exhibits, therefore implying
deformation of the faces. To fabricate the prototype, we built each
face from two 3D-printed (Ultimaker 3) lego-like building blocks
(0.5 mm thick polylactide, PLA), between which a thin lasercut
sheet (50 µm thick Mylar) was manually clamped to connect the
faces and form the flexible hinges. To compress the structure
between two stable states we used a material test machine
(Instron 5965L9510), in which we applied a cyclic displacement
with a magnitude of umax ¼

ffiffiffi
2

p
L. Figure 2a shows the average

force–displacement response of the last five compression cycles,
in which the line thickness indicates the standard deviation.

The results show an initial increase in force (F) due to the
elastic deformation of the structure. At u=umax � 0:6 the response
reaches a plateau, after which instabilities of the structure start to
appear indicated by sudden drops in the reaction force.
Importantly, the force reaches negative values after the instability
at u=umax � 0:75, implying that the structure has passed an
energy barrier reaching a different stable state. When slowly
releasing the compression, the structure follows a different path
as can be seen from the hysteresis. Simulations of the same
loading conditions using our numerical model are shown in
Fig. 2b (Methods). While some differences exist between
simulations and experiments, the similarity is striking. Both the
experimental and numerical response are characterized by the
same instabilities and deformation sequences (see insets in Fig. 2).
Moreover, additional simulations (Supplementary Fig. 1) reveal
that the observed response is mainly due to stretching of the faces
and not bending of the hinges, since the stiffness ratio κ can be
increased by at least one order of magnitude (from κ ¼ 10�4 to
κ ¼ 10�3) without seeing any major effect on the response.
These experiments show that the simulations can qualitatively
predict the behavior of the structure. Therefore, our numerical

models can be used to find stable states for the prismatic
geometries.

Applying local actuation. To gain insight into the non-linear
behavior of these structures when applying local actuation, we
next visualize a 2D projection of the energy landscape that can be
obtained by actuating hinge-pairs. The actuation is achieved in
our simulations by applying torques to the specific hinges, forcing
them towards a target angle. Figure 3a shows the energy of a
prismatic structure based on a triangular prism, where we first
deform the structure by actuating hinge b to θb, after which we
actuate hinge a to θa. The energy is normalized by the maximum
folding of the hinges and stretching of the faces (Methods).
Interestingly, for θa þ θb<π deformation is dominated by folding
of the hinges, indicating that the structure is rigidly foldable (i.e.,
deforms along one of the two soft modes). However, for θa þ
θb > π the faces of the structure start to deform, leading to a
dramatic increase in the elastic energy. For larger deformations
the projection of the elastic energy becomes discontinuous,
indicated by sudden drops, such that the structure undergoes
instabilities during loading.

After deforming the structure, we release both torques and let
the structure relax to a local energy minimum (Supplementary
Movie 2). If the configuration after relaxation is different than the
initial state, we have found a new stable state. The state diagram
in Fig. 3b shows that for the structure based on a triangular
prism, all initially deformed states converge to two stable states
with ðθa; θbÞ ¼ ð2=3π; 2=3πÞ and ðπ; 0Þ indicated by the star
symbols in Fig. 3b. Repeating this analysis for all other hinge-
pairs reveals the existence of at least three stable configurations
(Supplementary Fig. 2).

Similarly, we can apply this analysis to different prismatic
structures, for example one based on a truncated tetrahedron
(Fig. 3c, d). This structure does not exhibit any soft modes in its
initial configuration, as expected from the initial experiments
(Fig. 1) and previous numerical studies6. Nevertheless, we find
several stable states. Already when actuating one hinge-pair, the
simulations reveal a highly complex energy landscape with
pathways that lead to 16 stable states. Some of these are related by
rotational or mirror symmetries. In order to consider these
symmetries we create a clustering method based on the values of
the angles of all the hinges in the stable state to find the unique
stable states (Methods). Following this method, we only obtain
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Fig. 2 Comparison of multistable behavior between experimental and numerical compression tests. a Average force–displacement response obtained by
cyclic loading (five times) of an experimental prototype of a prismatic structure based on a cuboctahedron made from 3D printed faces (2 × 0.5 mm thick
PLA) connected by flexible Mylar hinges (50 µm thick). The standard deviation is indicated by the thickness of the line. The force changes sign when an
energy barrier is crossed, indicating that the structure deforms from one stable state to another. b Normalized force–displacement response obtained with
our numerical method for the same structure. The behavior of both the experiments and the simulations are strikingly similar, both showing one instability
when compressing the structure and two when returning to the initial configuration. Note that a small hysteresis loop observed in simulations at the end of
the compression is not captured in experiments possibly due to a small misalignment when clamping the structure or small fabrication errors of the
prototype.
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eight unique stable states. It is interesting to note that ðθa; θbÞ ¼ð0; πÞ (Fig. 3d) describes three different stable configurations.
This is a clear indication that we are looking at a 2D projection of
a higher dimensional energy landscape. Furthermore, by chan-
ging the order of loading (Supplementary Fig. 3), the final
deformed shape of the structures varies, indicating path-
dependent behavior. Finally, by analyzing all other hinge-pairs
(Supplementary Fig. 3), we found a total of 12 unique stable
states.

Reducing the search space. Selecting hinge-pairs to scan through
the energy landscape is a successful method to find energy
minima, however precise control of actuation applied to multiple
hinges is difficult to achieve in experiments12. Therefore, we need
a more realistic approach to search for additional states that
can be achieved in experiments. To do so, we limit the actuation
to either off (θ ¼ 0) or on (θ ¼ π). This enables us to explore a
larger range of hinge combinations to which local actuation
is applied, and broadens our search for other stable configura-
tions. However, before doing so, we first describe a method to
reduce the search space in order to significantly reduce the
computational needs.

We start by deriving the number of hinge combinations that
can be actuated. For these combinations we consider all hinges of
the structure, because by definition deformation of the structure
requires energy (e.g., actuation) regardless whether the structure
exhibits soft modes or not. Each prismatic structure is composed
of two hinge types: internal and external. The internal hinges
correspond to the edges of the polyhedron that is used as a
template, while the external hinges arise from the extrusion
process. For example, a prismatic structure based on a
tetrahedron has nint ¼ 6 internal hinges and next ¼ 2nint ¼ 12
external hinges. If we select one of these hinges for actuation,
there are a total of η1 ¼ nint þ next ¼ ntot ¼ 18 different possi-
bilities. When selecting two hinges, there are a total of η2 ¼
ntot!=ð2!ðntot � 2Þ!Þ ¼ 153 combinations that we can make. In
general, we can write for a selection of s actuated hinges
ηs ¼ ðntotÞ!=ðs!ðntot � sÞ!Þ, leading to a total number of actuation
combinations equal to ηtot ¼ 2ntot . These combinations grow
exponentially with the number of edges of the prismatic structure
(Supplementary Fig. 4). This makes it nearly impossible to run all
different actuations for prismatic structures based on larger

polyhedra, such as a cuboctahedron (nint ¼ 24) that has more
than 1021 combinations.

By focusing only on the internal hinges of the prismatic
structures (nint), we reduce the number of combinations ηint to
22nint . Note that e.g., for a cuboctahedron template this is
approximately a reduction of 14 orders of magnitude (Supple-
mentary Fig. 4). However, we still need to reduce η further to be
able to efficiently scan the energy landscape. We therefore exploit
the symmetries of the prismatic structures to remove the
combinations of hinges that can be rotated or mirrored leading
to exactly the same actuation patterns. To find symmetric
actuation patterns, we first convert the polyhedron into a directed
graph, mapping all the internal hinges to nodes on the graph.
Depending on the two faces of the original polyhedron that are
connected by the hinge, we give each corresponding node in the
graph a specific type. For example, a hexagonal prism has the
types triangle-square and square-square, while a tetrahedron only
has the type triangle-triangle. We then construct the graph by
connecting a directed line between two nodes if both hinges share
one vertex and the internal polyhedron can rotate clockwise to
the normal of the face that both hinges share. Next, we determine
the minimum distance matrix between nodes33, in which we keep
track of the node type encountered when traveling along the
shortest path. We extract all principal sub-matrices from the
distance matrix and compare their eigenvalues and vectors to
identify and remove symmetric loading cases (Methods). Using
this method we can further reduce the number of hinge
combinations (ηsym) by approximately two orders of magnitude
(Supplementary Fig. 4).

Applying the actuation patterns to find stable states. We next
use these unique hinge combinations to apply discrete (i.e., on/
off) actuation to the prismatic structures in order to find their
stable states. As before, for each load case we first apply a torque
to the corresponding hinges, after which we release the torque
and let the structure relax to equilibrium. We then follow a
clustering method to find the unique stable states (Methods).
Additionally, we characterize the stability of these unique stable
states by stepwise increasing the stiffness of the hinges by chan-
ging κ in our numerical model, pushing the structure back to its
original undeformed state. We record the last value (κmax) for
which the prismatic structure remains in the stable configuration.
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In Fig. 4a we show the results for the prismatic geometry based
on a truncated tetrahedron, in which we plot the maximum value
of the hinge stiffness, κmax, against the normalized stretch energy,
~Estretch, for all the stable states that we found. While we previously
found 12 stable states for this structure when actuating only
hinge-pairs (Fig. 3c, d), by running all the unique hinge
combinations (ηsym) we find a total of 213 stable states (where
we already removed the duplicate and symmetric stable states).
To verify these results, we performed experiments on a prototype
made with the same fabrication method discussed previously
(Fig. 4b). We tried to obtain the 17 states that can be reached by
actuating up to 3 hinges simultaneously (η3sym). While seven states
can be found directly, we observe two important differences
between simulations and experiments. First, the stable states (i–v)
characterized by κmax < 10�3 cannot maintain their stable
configuration after releasing the actuation, and instead relax to
states vii and xi (Supplementary Movie 3). We deduce from this
observation that the value of κ in our experiments is equal to
κ � 10�3 (dotted line in Fig. 4a). Second, the stable states viii and
xiv-xvii cannot be reached in experiments due to a limitation of
the maximum stretch that the hinges of the prototypes can
undergo. This difference is expected, as these constraints have not
been taken into account in the simulations to maximize the
search space.

To highlight the influence of the maximum stretch that we
observe in experiments, we also performed experiments on a
prismatic geometry based on a cube. While we find a total of eight
stable states in our simulations (Fig. 4c), we were not able to reach
any of these configurations with the current fabrication method.

However, replacing the Mylar hinges with stretchable elastomeric
hinges (0.5 mm silicon rubber) enabled us to overcome higher
stretch energy barriers, such that we were able to find six of the
stable states in experiments. Note that we were still not able to
reach two of the stable states. The stretch to obtain state ii is still
larger than the capabilities of our prototype, while state iii has
non-adjacent faces crossing that are not accounted for in our
numerical model. Furthermore, we find that the elastomeric
hinges result in a lower κ in the prototype, such that we were able
to achieve stable states with κmax < 10�3.

Finally, we applied the same analysis to the other 16 prismatic
structures based on regular polyhedra that either have up to
nint ¼ 30, or that can be used to construct uniform space-filling
tessellations6. Note that for polyhedra with nint > 18 we were still
not able to run all possible unique hinge combinations, and have
limited ourselves to combinations of up to three hinges, i.e., η3sym
(Supplementary Fig. 4). The number of stable states for the
studied structures ranges from 2 to 418, as reported in
Supplementary Fig. 5. Furthermore, we show some of the possible
stable states that we can get from two different structures based
on a truncated cube and a rhombicuboctahedron in Supplemen-
tary Fig. 6.

Multistable metamaterials. We have shown that by local actua-
tion we are able to effectively explore the non-linear energy
landscape of prismatic structures and find additional minima. We
next show that our method can also be applied to find stable
states in prismatic metamaterials assembled from these building
blocks, by using periodic boundary conditions (Methods). Note
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that periodic boundary conditions introduce additional con-
straints that considerably limit the stable states that can be
achieved, and has a huge effect on the non-linear response of the
material. In fact, many of the asymmetric stable states that we
found for the unit cells can no longer be achieved in the materials.
Therefore, the challenge here is to design materials that are
capable of being mechanically stable in additional states. To
perform a first exploration, we focus on cubic tessellations that
can be constructed from a single prismatic structure. We consider
11 of the polyhedra that were previously found to be multistable,
which results in a total of 15 materials (Supplementary Fig. 7). In
order to search for stable states and to limit the number of
actuation patterns that have to be applied, we apply the same
actuation patterns to the material that previously resulted in
stable configuration for the prismatic structure used as a unit cell.

We find that most (11) of the materials show additional stable
states (Supplementary Fig. 7). In Fig. 5a–c and Supplementary
Movie 4 we show three of these multistable materials and some of
their stable states with unit cells based on a cuboctahedron, a
rhombicuboctahedron and a truncated cuboctahedron. Note that
the energy of the metamaterial’s stable states do not have to be
equal to the prismatic building blocks. This can be seen for
example from the stretch energy of the stable state of the unit cell
of a cuboctahedron in Fig. 5d, which have shifted for the periodic
arrangements.

To validate these findings, we fabricated a material assembly
based on a cuboctahedron, that contains 2 ´ 2 ´ 2 building blocks.
As expected, we are only able to achieve one of the stable states
(Fig. 5e), since states ii and iii lie below the κmax � 10�3 threshold
as previously predicted. To verify this, we also fabricated a second
sample with thicker Mylar sheets of 125 µm, and we found that
this metamaterial does not exhibit any stable states (Supplemen-
tary Movie 5).

While here we have limited our analysis to periodic boundary
conditions applied to the unit cells, similar as in rigid origami6,
stable states can appear on the edges and corners of the materials.
This is clearly demonstrated in Fig. 5f showing an edge state. We
are also able to observe additional stable states with wavelength
longer than the unit cells (Fig. 5g). In order to capture these in
our model, larger unit cells would have to be considered.
Therefore, additional studies have to be performed to continue
exploration of the rich energy landscape, including many other
tessellations that can be constructed.

Discussion
In summary, we have introduced a computational strategy to
visualize and efficiently explore the complex energy landscape of
3D prismatic structures. We revealed the vast multistability of
these structures, and despite that our numerical approach only
explores part of the configuration space, by basing our method on
local actuation we were able to find stable states that can be
achieved experimentally. Additionally, by tessellating these pris-
matic structures, we find multistable metamaterials that can
reconfigure their architecture and therefore tune their properties.
Importantly, these materials do not require energy to maintain
their stable configurations, and will be robust to external varia-
tions as significant energy barriers have to be overcome to alter
their structure. Moreover, by varying the relation between hinge
and face stiffness, the stability of states can be tuned20,22,34. We
believe that our local actuation strategy can also be applied to
other origami-inspired metamaterials.

While we have only validated our experiments at the
centimeter-scale using relatively simple fabrication techniques,
the mechanical behavior of our systems is theoretically scale-
independent. However fabricating such intricate structures at the
micro/nano scale is not trivial. More advanced 3D-fabrication
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techniques such as two-photon lithography35 or stereo-
lithography36 could lead this innovation. Additionally, scaling of
these structures will introduce environmental influences such as
capillary effects. It is not known how such forces influence the
(multistable) behavior of our structures, and additional research
is required to explore this direction. Moreover, instead of
manually deforming the structure, they can be made responsive
by applying local actuation to the hinges. For our prototypes, this
can be achieved by applying pneumatic pouches to some of the
hinges12. As an example, already by discrete actuation of two
pouches applied to the prismatic structure based on a truncated
tetrahedron, we were able to achieve four of the stable states
(Supplementary Movie 6). Similar strategies could be applied to
actuate our designs at smaller length scales, using e.g., localized
swelling of hydrogels for actuation. However, individually
addressable local actuation patterns become difficult to apply at
small scales and therefore a particular interesting future direction
is the application of global stimuli to trigger the multistable
behavior, e.g., heat or pH variations. Global stimuli can poten-
tially lead to different folding behavior for a single structure by
incorporating multiple materials into the design that each
respond differently to changes in their environment or to dif-
ferent loading rates. Therefore, we believe that these prismatic
multistable materials could lead to the next generation of multi-
functional metamaterials that can be applied as e.g., reconfigur-
able acoustic wave guides37, microelectronic mechanical
systems38 and energy storage devices39.

Methods
Minimization of energy. To simulate the folding and deformation behavior of our
structures, we implemented a numerical method that minimizes the elastic energy
using gradient information. First, we create the prismatic structures by extruding
the faces of an internal convex polyhedron6. The resulting structure has F rec-
tangular faces, each surrounded by four edges (SE) and divided by two diagonals
(SD) defined by the four vertices (V) of each face. Edges that connect two faces are
defined as hinges (H). We describe the complete shape of the prismatic structure by
the coordinates of its vertices x ¼ ½x1;1; x2;1; x3;1; x1;2; ¼ ; x3;V �. In this section, we
first derive the elastic energy associated with face stretching and hinge folding, and
the work applied to deform the structure. Second, we derive the required face
bending, stretch and angle constraints, and the periodic boundary conditions.
Third, we discuss how we normalize the energy to allow us to compare between
different prismatic structures, and finally we describe the implementation of our
algorithm in Matlab.

First, two types of elastic energies are assigned to the structure: the hinge folding
energy Ehinge modeled as torsional springs placed at the hinges, and the face stretch
energy Estretch modeled as linear springs placed at the edges and the diagonals of
each face. We assume that the structure has zero elastic energy in its initial
extruded state with coordinates X, such that the total elastic energy of the structure
is given by

Eelastic ¼ Ehinge þ Estretch: ð1Þ
The gradient of Eelastic with respect to the displacement of the vertices u ¼

x � X is then equal to

dEelastic ¼ dEhinge þ dEstretch ¼ ∂Ehinge

∂u
duþ ∂Estretch

∂u
du: ð2Þ

We model each hinge as a linear torsional spring with an angle Θ in the initial
state, θ in the deformed state and stiffness kh. The hinge energy Ehinge is defined as

EhingeðθÞ ¼
XH
i¼1

1
2
khðθi � ΘiÞ2 ¼

1
2
khðθ�ΘÞ � ðθ�ΘÞ; ð3Þ

where θ ¼ ½θ1; θ2; ¼ ; θH � and Θ ¼ ½Θ1;Θ2; ¼ ;ΘH �. Each hinge angle can be
found from the coordinates of the vertices according to

θ ¼ tan�1 ah � na ´nbð Þ
na � nb

� �
; ð4Þ

in which na and nb are the normal vectors of the two faces connected by the hinge,
and the vector ah lies along the hinge axis (Supplementary Fig. 8a). Note that we
use the function tan�1 (instead of e.g., using θ ¼ cos�1ðna � nbÞ) since its domain is
defined for ð�1;1Þ and the angle can be defined between ½�π; π� using a Four-
quadrant inverse tangent. Partial derivatives of the hinge angles with respect to

vertex displacement can then be found according to

∂Ehinge

∂u
¼ ∂Ehinge

∂ðθ�ΘÞ
∂ðθ�ΘÞ

∂u
¼ khðθ�ΘÞJhinge; ð5Þ

in which Jhinge is a Jacobian matrix with entries

Jhinge½i;3ðv�1Þþj� ¼
∂θi
∂xj;v

; ð6Þ

for i ¼ 1; ¼ ;H, j ¼ 1; 2; 3 and v ¼ 1; ¼ ;V . For a more detailed explanation and
description of the Jacobian see ref. 6.

Stretching of each face is modeled using linear springs placed along the edges
and diagonals. While Filipov et al.32 derived specific expressions for the stiffness of
each spring, given the constraints on out-of-plane bending of the face we simplify
our model and assume that all springs have stiffness ks. As a result, the ratio
between hinge bending and face stretching is set by a single parameter κ ¼ kh=ks.
The face stretching energy Estretch can be found according to

Estretch ¼
XSEþSD

i¼1

1
2
ksðli � LiÞ2 ¼

1
2
ksðl� LÞ � ðl� LÞ; ð7Þ

in which Li and li correspond to the initial and deformed length of the i-th edge,
respectively, L ¼ ½L1; L2; ¼ ; LSEþSD

� and l ¼ ½l1; l2; ¼ ; lSEþSD
�. Furthermore, the

change in length of each edge can be found from the displacement of the two
corresponding vertex displacements (Supplementary Fig. 8b)

l � L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3

i¼1
ðui;a � ui;bÞ2

r
: ð8Þ

The partial derivative of the face stretching energy then equals

∂Estretch

∂u
¼ ∂Estretch

∂ðl� LÞ
∂ðl� LÞ

∂u
¼ ksðl� LÞJstretch; ð9Þ

where Jstretch is a Jacobian with entries

Jstretch½i;3ðv�1Þþj� ¼
∂li
∂xj;v

; ð10Þ

for i ¼ 1; ¼ ; SE þ SD , j ¼ 1; 2; 3 and v ¼ 1; ¼ ;V .
In order to deform the structure, we specify a target angle for A hinges, and

apply a penalty method to increase the energy by Eload, seen as work energy, in case
the target angles are not satisfied. The total energy of the system E that includes
both the elastic deformation and the loads is then equal to

E ¼ Ehinge þ Estretch þ Eload; ð11Þ
in which

Eload ¼
XA
i¼1

1
2
kpðθi � Θ̂iÞ

2
; ð12Þ

kp sets the stiffness of the applied penalty and Θ̂i is the target angle of the i-th hinge
to which a load has been applied. Note that for kp � kh we are practically
constraining the angles to the target angles of the loaded hinges, while for smaller
values of kp the target angles might not be reached.

Second, while with the derivation of Eelastic we have specified the energy
landscape of our prismatic structures, certain deformations are not admissible. We
present five different constraints that we implemented to limit the deformation.
Specifically we discuss how to: fix vertices to remove rigid body translations and
rotation, prevent face bending, limit the hinge angle to implement contact, limit the
edge stretching to prevent numerical convergence problems, and simulate infinite
periodic tilings of the prismatic structures using periodic boundary conditions.

To prevent rigid body translations we select one vertex from the first face of the
prismatic structure X1 and fix the displacement to u1 ¼ ð0; 0; 0Þ. Moreover, to
avoid rigid body rotations we fix two other vertices on the same face X2 and X3
according to

u2 � ðX2 � X1Þ ´ ðX3 � X1Þ ¼ 0; ð13Þ

u3 � ðX2 � X1Þ ´ ðX3 � X1Þ ¼ 0; ð14Þ

u2 � ðX3 � X1Þ ¼ 0: ð15Þ
To ensure that no face bending can occur, we impose that the out-of-plane

displacement of each vertex on a face remains zero (zi ¼ 0 for i ¼ 1; 2; ¼ ;Vf , in
which Vf is the total number of vertices of the f-th face). To determine the out-of-
plane deformation we use two vectors w1 and w2 on a face to get its normal and
project the remaining edge vectors (wi for i ¼ 3; ¼ ;Vf � 1) onto the face. For
each face, we then have (Supplementary Fig. 8c)

zi ¼ wi � ðw1 ´w2Þ ¼ 0; ð16Þ
for i ¼ 3; ¼ ;Vf � 1.

If we write z ¼ ½z1; z2; ¼ ; zVF
�, in which VF ¼

PFðVf � 3Þ, the partial
derivative of the face bending constraints with respect to the vertex displacement
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equals

Cbend½i;3ðv�1Þþj� ¼
∂zi
∂xj;v

; ð17Þ

for i ¼ 1; ¼ ;VF, j ¼ 1; 2; 3 and v ¼ 1; ¼ ;V .
We need to limit rotation of the hinge since each hinge connects to two faces

which come into contact when θ ¼ �π or π, representing a fully closed hinge.
Because we use a four-quadrant inverse tangent to determine the angles of the
hinges between two adjacent faces (Eq. (4)), the angle can vary between
�π � θ � π. However, when the two faces cross each other, the hinge angle will
have a real value that lies outside the range of the inverse tangent. To avoid this
problem, we ensure that the faces never cross by applying a tighter constraint to the
hinge angles

�0:985π < θi < 0:985π; ð18Þ
where the limits have been determined by running several simulations. Note that
the gradient for this constraint is given by Eq. (6).

We also implemented two other precautionary measurements to avoid adjacent
face crossing. First, we keep track of the angles of previous iteration step such that a
sudden change in angle larger than π indicates the crossing of the two faces. If this
occurs, depending on the sign of the step, we add or subtract 2π to have the real
value outside the range �π � θ � π. Second, we are limiting the step size of the
minimization function so that the difference in angles between steps cannot
become greater than π if no adjacent face crossing occurs.

While stretching is permitted in both simulations and experiments, our
simulations shows convergence problems when higher stretches occur. For
example, when the flat face becomes concave, the normal of the initially rectangular
face becomes ill-defined. This could occur when the maximum strain of an edges of
the faces become larger than 0.17. Nevertheless, we found this constraint too tight
as it was prohibiting large deformations on the structure and the search for stable
states. Therefore, we loosen this constraint in our simulations to a maximum strain
of edges according to

�0:30 � li � Li
Li

� 0:30; ð19Þ

where li and Li are the deformed and original length of an edge or diagonal,
respectively. For all simulations, this value did not produce ill-defined normals. The
gradient for this constraint is given by the normalized Jacobian of Eq. (10), and
equals

Cstretch½i;j� ¼
1
Li

∂li
∂xj

; ð20Þ

for i ¼ 1; ¼ ; SE þ SD and j ¼ 1; ¼ ;V .
To create metamaterials represented by infinite large tessellations of the

prismatic structures, we apply periodic boundary conditions along the lattice
vectors Ai for i ¼ 1; ¼ ; ndim. Depending on the number of lattice vectors
(ndim 2 ½1; 2; 3�), they can span the material in one, two or three dimensions. For
the undeformed structure, two vertices are periodically located when

Xb � Xa ¼
Xndim
i¼1

αiAi; ð21Þ

where Xa and Xb are the initial positions of the vertices, and αi 2 ½�1; 0; 1�
represents the possible linear combination of the lattice vectors for tiling the unit
cell in space. Then, periodic boundary conditions can be applied to these
periodically located vertex pairs according to

ub � ua ¼
Xndim
i¼1

αiai; ð22Þ

in which ai represents the deformation of the lattice vector.
Third, to compare the results between prismatic structures based on different

polyhedra, we normalize the elastic energy. The elastic energy of any structure is
given by Eq. (1). Note that the constraints Eq. (18) and Eq. (19) limit the
deformation of the hinge angles θi and the edge length li , and therefore we can
define a total maximum energy when all the angles and edge lengths are at their
maximum, respectively θmax

i and lmax
i . The maximum hinge energy is then equal to

Emax
hingeðθÞ ¼

XH
i¼1

1
2
khðθmax

i � ΘiÞ2 ¼
1
2
khðθmax �ΘÞ � ðθmax �ΘÞ: ð23Þ

Similarly, the maximum energy as a result of in-plane face deformation equals

Emax
stretch ¼

XSEþSD

i¼1

1
2
ksðlmax

i � LiÞ2 ¼
1
2
ksðlmax � LÞ � ðlmax � LÞ: ð24Þ

We then define the total normalized elastic energy ~Eelastic according to

~Eelastic ¼
Eelastic

Emax
elastic

¼ Eelastic

Emax
hinge þ Emax

stretch

; ð25Þ

and the individual components of the elastic energy are given by

~Ehinge ¼
Ehinge

Emax
hinge

ð26Þ

~Estretch ¼ Estretch

Emax
stretch

: ð27Þ
Last, we implement the aforementioned set of equations in MATLAB, and use

the build-in non-linear constrained optimization function called ‘fmincon’, to
minimize the elastic energy (Eq. (11)) given a set of linear (Eqs. (13), (14), (15) and
(22)) and non-linear (Eqs. (16), (18) and (19)) constraints. Specifically, we choose
the ‘Active-set’ algorithm for the simulations of the energy landscape (Fig. 2,
Supplementary Fig. 2 and Supplementary Fig. 3) and the compression test
simulation (Fig. 3 and Supplementary Fig. 1) since a maximum step size can be
defined that makes the tracking of all the hinge angles more reliable. The other
simulations are performed using the ‘SQP’ (Sequential Quadratic Programming)
algorithm. In this algorithm the step size is not limited and therefore converges
faster to the energy minimum. Note that for this algorithm we fold the structures in
3 optimization steps.

Compression test. To verify the numerical model we performed an experimental
compression test on a prismatic structure based on a cuboctahedron. Here, we
describe the simulation of the compression test that we used as a comparison. In
our simulations, we use a stiffness ratio of κ ¼ 10�4. We select two opposite faces
on the structure, and apply constraints to the vertices that mimic the clamping in
experiments. To do so, we only allow deformation of the vertices along the com-
pression axis. We then create two additional edges (Scomp) parallel to the loading
axis, and use them to connect both clamped faces. We use these edges to compress
the structure by stepwise reducing their length and penalizing the energy according
to

Eload ¼
XScomp

i¼1

1
2
kpðli � LiÞ2; ð28Þ

where kp is the stiffness of the edges used to compressed the structure. We assign a
stiffness that is much larger than the edge stretching stiffness and the hinge stiff-
ness (kp � ks; kh), so that effectively we are performing a displacement controlled
compression.

In the simulation, we compress the structure in 1000 steps (ncomp), after which
we stepwise remove the loading in the same number of steps. For each increment
we allow the structure to relax with the specified constraints, while using previously
mentioned optimization tool with the ‘Active-set’ algorithm.

To obtain the reaction force, F, during loading, we take the derivative of the
elastic energy with respect to the displacement along the loading axis (z-axis), and
find

F ¼ dE
dz

¼
Xncomp�1

i¼1

Eiþ1 � Ei

ziþ1 � zi
; ð29Þ

where we iterate through all the steps of the simulation to obtain the numerical
gradient. Furthermore, we normalize the force by the weighted average of the
stiffness defined by

~k ¼ ksðSE þ SDÞ þ khH
SE þ SD þ H

; ð30Þ

where SE , SD and H are the total number of edges, diagonals and hinges,
respectively.

Hinge selection reduction. The prismatic structures studied here are highly
symmetric, resulting from the underlying uniform polyhedra used as templates.
Therefore, we developed a method to exploit these symmetries in order to reduce
the search space to find stable states. Note that to determine unique selections of
actuated hinges we consider only the edges of the internal polyhedron. In this
section we will start from the polyhedron, and create a directed graph that
represents the edges and their connectivity. Next, we determine the minimum
distance matrix from the graph, from which we extract all principal sub-matrices
that represent the hinge selections. In the remaining part of this section we explain
our method in more detail, and as an example, apply it to a prismatic structure
based on a triangular prism.

First, to determine symmetric hinge selections for the actuation of the prismatic
structure, we start by constructing a graph of the internal polyhedron.
Supplementary Fig. 9a shows an example of the graph belonging to a triangular
prism, in which we have mapped the edges of the polyhedron to nodes in the
graph. We then designate a type to each node in the graph, depending on the faces
of the polyhedron that are connected to the corresponding edge, e.g., for a
triangular prism there are two types: (a) triangle-square (denoted in red) and (b)
square-square (denoted in purple).

We create directed connections between nodes in the graph. For this, we
consider all the faces of the polyhedron, and define an outward-pointing normal
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such that we can follow edges of each face using the right-hand-rule. For each pair
of consecutive edges a connection is created between nodes in the graph, where the
direction points from the first to the second node. For example, in Supplementary
Fig. 9a, the edges numbered 8, 1, 7, and 4 form a face and are consecutive according
to the described method, therefore directional connections from 8 ! 1, 1 ! 7,
7 ! 4 and 4 ! 8 are created.

Second, once the graph is created, we compute the shortest directed distance
between the nodes. We use this distance to compare all the node selections,
regardless of their original location on the prismatic structure. Symmetric node
selections are characterized by similar paths traveled on the graph. To compute the
shortest distance matrix we first made a depth search algorithm that enumerates all
the possible paths between two nodes. Note that instead of using the length of the
path in the matrix, which is typically done in graph theory, we use an array of the
node types passed along that path (Supplementary Fig. 9c). In order to differentiate
between equal length paths, we assign a numerical value to each one depending on
the types of nodes and select the smallest number for consistency.

For example, for a triangular prism the function enumerates the paths between
node 1 and 3. A few of the possible paths are 1 ! 7 ! 3, 1 ! 2 ! 3 and
1 ! 2 ! 8 ! 5 ! 4 ! 6 ! 7 ! 3, indicated by the node type array (aba), (aaa)
and (aabaaaba), respectively. We then assign the value 1 to the node type a and 2 to
node type b. Two of the paths have the same length, but the assigned number
representing the paths is different. We select path (aaa) that has the lowest value, 111.
Therefore, the path on the shortest distance matrix, at entry ð1; 3Þ in Supplementary
Fig. 9c, is (aaa) representing the path from node 1 through node 2 to node 3.

Last, from the shortest distance matrix we can compute the unique hinge
selections after assigning values to the paths, by considering the eigenvalues of all
the principal sub-matrices. We start by considering actuating one hinge, and after
finding all unique hinge selections, increase the number of actuated hinges by one
until the total number of hinges has been reached.

Since the distance between a node and itself is given by just the node type, we
select one of each type. In case of a triangular prism we select nodes 1 and 7 with
types (a) and (b), respectively (Supplementary Fig. 9c). Next, we choose a second
node expanding the previous selection of one node. We go through all the
remaining nodes extracting the principal sub-matrices. These sub-matrices contain
the information of the node types and the distance between nodes, and therefore
their eigenvalues are unique to the node selection. Considering all the sub-matrices,
we choose hinge selections that have different eigenvalues and remove duplication.

We repeat this strategy until all unique hinge selections have been found
(Supplementary Fig. 9c). Note that we only need to consider hinge selections that
contain up to half the number of nodes, given that we can simply consider the
hinge selections to be reversed (i.e., replacing actuated hinges with non-actuated
hinges and vice versa). For example, to choose eight nodes for a triangular prism,
we inverse the one-node thus selecting nodes 2–9 and 1–6,8,9 which are the inverse
of node 1 and 7, respectively.

Stable states clustering. In order to obtain the stable states that are unique under
rotational or mirror symmetry, we consider the angles of all the hinges in the
prismatic structure ntot in the final stable configuration, and place them in a
ntot-dimensional array, θstable. We then separate the internal and external angles
into two different groups. For each group we arrange the angles in order of
increasing value. By doing so, we remove the spacial position of the hinges and
obtain only the values of the angles in a specific order, thus considering all rota-
tional and mirror symmetries. Next, we compare the ordered θstable arrays of all the
stable state to cluster the ones that are similar to each other. For this we use a
hierarchical clustering with centroid linkage40 and a euclidean distance metric to
shape the clusters. The maximum distance inside a cluster is of 1:5 rad. Therefore,
we consider configurations with an average error of 1ffiffiffiffiffi

ntot
p rad in every angle to be the

same configuration. This error is up to 13.5 deg for the smallest structure based on
a tetrahedron, and 7.8 deg for the structure based on truncated tetrahedron.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request.

Code availability
All computer algorithms necessary to reproduce the figures are available from the
corresponding author upon reasonable request.
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