$C B=1$
BB short = square root of 2: 1.4142135623731
BB long = 2
$B D=$ square root of $8: 2.82842712474619$
(the above are for the example below only, your design may differ)

AZ (radius) $=$	2.0
$B Z$ (radius) $=$	2.234375
CZ (radius) $=$	2.828125
DZ (radius) $=$	3.0
EZ (radius) $=$	3.46875
XZ (radius) $=$	2.44948974278318 (square root of 6)

Using the compass and handout pages $4 B$ and 5 , transfer all the distances AZ, BZ, CZ, DZ, and EZ onto your master template drawing Simply draw a ceries of concentric circles using those measurements. The common center is Z (center of the cube). Note: if you actually used the point between B and D on the face of the cube, that distance is the square root of 2 -- we are calling it $X Z$, circle in red.

After all the concentric circles have been drawn, all the possible point that will determine your shapes are given in this circular grid. To find them, simply draw the circles (green in drawing) by taking the measurements from the face of your cube. In this example they are (left to right) CB, BB (short), BB (long), and BD Start by pointing the radius CB on the large CZ (radius) circle. Where it intersects the large circle B, that's the base of your first triangle. Draw the next circle BB (radius) and so on.

Thanks to Slate Werner for this clever grid system.

320 - Drafting \& Sketching - Trogu

 Cube section measurementsHalf scale example below:
$\mathrm{CB}=1$
BB short $=$ square root of 2: $\quad 1.4142135623731$ BB long = 2
$\mathrm{BD}=$ square root of 8: 2.82842712474619 (the above are for the example shown below at half scale, your design may differ)

Use the grid below if desired. Draw your face section on the full size square grid first. Mark your points appropriately
$A Z$ (radius) $=$
BZ (radius) CZ (radius) = DZ (radius) = EZ (radius) =
$X Z$ (radius) $=$
2.0
2.234375
2.828125
3.0
3.46875
diameter $=4.0$
diameter $=4.46875$
diameter $=5.65625$
diameter $=6.0$
diameter $=6.9375$
diameter $=4.898979$

Slate's cube section chart

Using the compass and handout pages 4B and 5, transfer all the distances AZ, BZ, CZ, DZ, and EZ onto your master template drawing. Simply draw a ceries of concentric circles using those measurements. The common center is Z (center of the cube). Note: if you actually used the point between B and D on the face of the cube, that distance is the square root of 2 -- we are calling it $X Z$ - that circle is shown in red.

After all the concentric circles have been drawn, all the possible points that will determine your shapes are given in this circular grid. To find them, simply draw the circles (green in drawing at half scale) by taking the measurements from the face of your cube. In the half size example they are (left o right) CB, BB (short), BB (long), and BD.
Start by pointing the radius CB on the large CZ (radius) circle. Where it intersects the large circle B, that's the base of your first triangle. Draw the next circle BB (radius) and so on.

That example shown at half scale. You can use the full scale grid to construct your cube parts.

Thanks to Slate Werner for this clever grid system.
NOTE: This 11×17 sheet MUST be printed at 100% in order for it to work. Double check after printing to see if the square below is exactly 4 " $\times 4$ ".

