Visualizing
Proportions 5

Time series data is naturally grouped by, well, time
happen durmg a specific time frame. Proportion dal als‘o”g"mu’pé
but by categories, subcategories, and population. By population, | don’t |
mean just human population. Rather, population in this case repre-
sents all possible choices or outcomes. It's the sample space. i

In a poll, people might be asked if they approve, disapprove, or have no
opinion on some issue. Each category represents somethlng and the
sum of the parts represent a whole.

This chapter discusses how to represent the individdé{ categories,
but still provides the bigger picture of how each cholce relates to
the other. You use some of what you learned in the prevsous chapter
and get your first taste of interactive graphics using HTML, €SS, and
JavaScript and then have a look at graphics with Flash.

eriesofevents

‘EE CHAPTER 5: VISUALIZING PROPORTIONS

What to Look for in Proportions

For proportions you usually look for three things: maximum, minimum,
and the overall distribution. The first two are straightforward. Sort your
data from least to greatest, and pick the ends for your maximum and
minimum. If you were dealing with poll results, these could mean the
most popular and least popular answers from participants; or if you were
graphing calories from separate parts of a meal, you would see the big-
gest and smallest contributor to the overall calorie count.

You don't need a chart though to show you minimum and maximum. What

you are most interested in is the distribution of proportions. How does the

selection of one poll choice compare to the others? Are calories spread ‘j
evenly across fat, protein, and carbohydrates, or does one group domi-

nate? The following chart types can help you figure that out.

Parts of a Whole

This is proportions in their simplest form. You have a set of proportions
that add up to 1 or a set of percentages that add up to 100 percent. You
want to show the individual parts relative to the other parts but you also
want to maintain the sense of a whole.

The Pie

Pie charts are the old standby. You see them everywhere these days, from
business presentations to sites that use charts as a medium for jokes. The
first known pie chart was published by William Playfair, who also invented
the line graph and bar chart, in 1801. Smart guy.

You know how they work. As shown in Figure 5-1, you start with a circle,

which represents a whole, and then cut wedges, like you would a pie. Each

wedge represents a part of the whole. Remember that last part, because

a lot of beginners make this mistake. The percentage of all the wedges

should add up to 100 percent. If the sum is anything else, you have done ﬂ
something wrong.

PARTS OF A WHOLE ‘EE

PARTS OF A WHOLE WEDGE ANGLE
Sum of all wedges Value is proportionate
represent a whole, < to angle of wedge out
or 100 percent : of 360 degrees

v

WEDGE

Each portion of the pie
represents a category
or value

FIGURE 5-1 Pie chart generalized

Pie charts have developed a stigma for not being as accurate as bar charts
or position-based visuals, so some think you should avoid them com-
pletely. It's easier to judge length than it is to judge areas and angles. That
doesn’'t mean you have to completely avoid them though.

You can use the pie chart without any problems just as long you know its
limitations. It's simple. Keep your data organized, and don’t put too many
wedges in one pie.

CREATE A PIE CHART

Although just about every charting program enables you to make pie
charts, you can make one in Illustrator just like you did in the previous
chapter. The process of adding data, making a default chart, and then
refining should feel familiar.

To build the base of your chart—the actual pie—is fairly straightforward.
After you create a new document, select the Pie Graph tool from the Tool
window, as shown in Figure 5-2. Click and drag a rectangle so that it is

roughly the size of what you want your graph to be. You can resize it later.

‘EI:’ CHAPTER 5: VISUALIZING PROPORTIONS

[“]_] Column Graph Tool (i}
hﬂ] Stacked Column Graph Tool
i Bar Graph Tool

E Stacked Bar Graph Tool

% Line Graph Tool

& Area Graph Tool

I_ Scatter Graph Tool

@ Radar Graph Tool

FIGURE 5-2 Tool window in Illustrator

When you release the mouse button, a spreadsheet window pops up where
you enter your data. For a single pie chart, enter each data point from left
to right, and the values show up in your chart in the same order.

For this example, use the results from a poll on FlowingData. Readers
were asked what data-related field they were most interested in. There

were 831 responses.

AREA OF INTEREST NUMBER OF VOTES

Statistics 172
Design 136
Business 135
Cartography 101
Information Science 80
Web Analytics 68
Programming 50
Engineering 29
Mathematics 19

Other 41

Enter the numbers in the spreadsheet in Illustrator, as shown in Fig-
ure 5-3. The order you enter the numbers will match the order the wedges
appear in your pie chart, starting at the top and then rotating clockwise.

Notice that the poll results are organized from greatest to least and then
end with the Other category. This kind of sorting can make your pie charts

-

PARTS OF AWHOLE ‘EII

easier to read. Click the check mark in the top right of the pop-up when
you finish.

eane igmia st
N B[

172.00 136.00 7135400 101.00 80.00 68.00 50.00 m

=) - “r

FIGURE 5-3 Spreadsheet in Illustrator

The default pie chart appears with eight shades of gray, in a seemingly
random sequence with a black border, as shown in Figure 5-4. It kind of

looks like a grayscale lollipop, but you can easily do something about that.

The important thing here is that you have the base of your pie chart.

Now make the pie chart more readable
by changing some colors and adding text
to explain to readers what they are look-
ing at. As it is now, the colors don't make
much sense. They just separate the
wedges, but you can use colors as a way
to tell readers what to look at and in what
order. You did after all go through the
trouble of sorting your data from greatest
to least.

FIGURE 5-4 Default pie chart

If you start at 12 o'clock and rotate clockwise, you should see a descend-
ing order. However, because of the arbitrary color scheme, some of the
smaller wedges are emphasized with darker shades. The dark shade
acts as a highlighter, so instead, make larger wedges darker and smaller
wedges lighter. If for some reason, you want to highlight answers that
have fewer responses, you might want to color in reverse. In the case of
this poll though, you want to know what data-related fields were the most
popular.

B

The spreadsheet
in lllustrator is
fairly bare bones,
so you can't easily
manipulate or
rearrange your
data. A way to
get around this
is to do all your
data handling in
Microsoft Excel,
and then copy
and paste into
[llustrator.

Color can play an
important role in
how people read
your graph. It's not
just an aesthetic
component—
although some-
times it can be.
Color canbe a
visual cue just like
length or area, so
choose wisely.

‘I:' CHAPTER 5: VISUALIZING PROPORTIONS

@,

When you use

| opacity, the fill of
. the shape you are
- changing will blend
. with the color of

| the background.

. In this case, the
background is
white, which gives
| afaded look the

~ higher the trans-
parency. If, how-
ever, the back-

- ground were blue,
. the shape would

. appear purple.

Choose the Direct Selection tool in the Tool window, and then click a
wedge. Change fill and stroke color via the controls in the Color window.
Figure 5-5 shows the same pie chart with a white stroke and wedges col-
ored from darkest to lightest. Now it's easier to see that numbers go from
greatest to least, with the exception of the last wedge for Other.

Of course, you don't have to be so frugal
with your colors. You can use whatever
colors you want, as shown Figure 5-6.
Although it's usually a good idea to not

use colors that are bright—you don’t want
to blind your readers. If a blinding color
scheme fits with your topic though, go wild.

Because this is a FlowingData poll, | used
the shade of red from the FlowingData ESIRSIEE Bl ol o lare
logo and then made lighter color wedges arranged darkest to lightest
by decreasing opacity. You can find the

option in the Transparency window. At 0

percent opacity, the fill is completely see-

through; at 100 percent opacity, the fill is

not see-through.

Finally, add a title, a lead-in sentence, and
labels for the graph with the Type tool.
With practice, you can have a better idea
what fonts you like to use for headers and
copy, but whatever you use, Illustrator’s
alignment tools are your best friend when
it comes to placing your text. Properly
aligned and evenly spaced labels make

your charts more readable. You can also
make use of the Pen tool to create point-
ers, as shown in Figure 5-7, for the last three poll categories. These sec-

FIGURE 5-6 Colored pie chart

tions are too small to put the labels inside and are too close together to
place the labels adjacent.

PARTS OF AWHOLE ‘E!

WHAT DATA-RELATED AREA
ARE YOU MOST INTERESTED IN?

Below are results of a poll on FlowingData in May 2009.
Readers come from a variety of fields, but Statistics, Design,
and Business led the way.

Mathematics —l Other

|
Engineering T

Programming

Web Analytics

Info. Science

Cartography

FIGURE 5-7 Final pie chart with labels and lead-in copy

The Donut

Your good friend the pie chart also has a lesser cousin: the donut chart.

It's like a pie chart, but with a hole cut out in the middle so that it looks like
a donut, as shown in Figure 5-8.

‘H CHAPTER 5: VISUALIZING PROPORTIONS

The main thing

to remember,
whether you use

a pie chart or
donut chart, is that
they can quickly
become cluttered.
They're not meant
to represent a lot
of values. ~

P Download
Protovis at http://
vis.stanford.edu/
protovis/ and

put it in the same
directory that

you use to save
example files.

ARC LENGTH

Value is proportionate
_ tolength, relative to
", donut circumference

PARTS OF A WHOLE

Sum of all arc lengths
represent a whole, or
100 percent

ARC

Each portion of the donut
represents a category or value

FIGURE 5-8 Donut chart framework

Because there’s a hole in the middle, you don’t judge values by angle any-
more. Instead you use arc length. This introduces many of the same prob-
lems when you use a single chart with too many categories, but in cases
with fewer categories the donut chart can still come in handy.

CREATE A DONUT CHART

It's straightforward to make a donut chart in Illustrator. Create a pie chart
like you just did; then put a filled circle in the middle, as shown in Fig-
ure 5-9. Again, use color to guide readers’ eyes.

A lot of the time the middle of donut charts are used for a label or some
other content like was done in the figure.

Now make the same chart using Protovis, the free and open-source visu-
alization toolkit. It's a library implemented in JavaScript and makes use of
modern browsers’ Scalable Vector Graphics [SVG) capabilities. Graphics
are generated dynamically and enable animation and interactivity, which
makes Protovis great for online graphics.

PARTS OF A WHOLE ‘EI

WHAT DATA-RELATED AREA
ARE YOU MOST INTERESTED IN?

Below are results of a poll on FlowingData in May 2009.
Readers come from a variety of fields, but Statistics, Design,
and Business led the way.

Mathematics \‘ Other
|

Engineering —

Programming

Statistics

Web Analytics

Info. Science

Cartography

FIGURE 5-9 From pie to donut chart

Although you're about to get into a different programming language, you
still follow the same process like you did in R and Illustrator. First, load
the data, then build the base, and finally, customize the aesthetics.

Figure 5-10 shows what you want to make. It's similar to Figure 5-9, except
the labels are set at an angle, and when you mouse over an arc, you can
see how many votes there were for the corresponding category. Interac-
tion can get much more advanced, but you have to learn the basics before
you get fancy.

j CHAPTER 5: VISUALIZING PROPORTIONS

May 2009

FIGURE 5-10 Donut chart using Protovis

The first thing you do is create an HTML page—call it donut.html.

<html>
<head>
<title>Donut Chart</title>
<script type="text/javascript" src="protovis-r3.2.js"'></script>

<style type="text/css"> N
. J '\ .
#figure { <
width: 400px; "
height: 400px;) b
i) <
) g =%
</style> dW L
</head> b \ <
7 <body> ne !
A A . { ¢ { \
7 ; / % N p | R A ‘ . ‘N
; e, e / Y/ . £ i
T Ay ,/»\\ e Co A Yo /mt o
Wt AN 45T 4o K N\ AL e
/ / . NG A
Hen Src = Boi Hag £ foastiaed =3 %
g) ‘ R

PARTS OF AWHOLE ‘E

<div id="figure">

</div><!-- @end figure -->
</body>
</html>

If you've ever created a web page, this should be straightforward, but

in case you haven't, the preceding is basic HTML that you'll find almost
everywhere online. Every page starts with an <html> tag and is followed by
a <head> that contains information about the page but doesn’t show in your
browser window. Everything enclosed by the <body> tag is visible. Title the
page Donut Chart and load the Protovis library, a JavaScript file, with the
<script> tag. Then specify some CSS, which is used to style HTML pages.
Keeping it simple, set the width and height of the <div> with the id “figure”
at 400 pixels. This is where you draw our chart. The preceding HTML isn’t
actually part of the chart but necessary so that the JavaScript that follows
loads properly in your browser. All you see is a blank page if you load the
preceding donut.html file in your browser now.

Inside the figure <div>, specify that the code that you're going to write is
JavaScript. Everything else goes in these <script> tags.

<script type="text/javascript+protovis">
</script>

Okay, first things first: the data. You're still looking at the results from the
FlowingData poll, which you store in arrays. The vote counts are stored in
one array, and the corresponding category names are stored in another.
var data = [172,136,135,101,80,68,50,29,19,41];

var cats = ['Statistics", "Design", "Business", "Cartography",

"Information Science", "Web Analytics", "Programming",
"Engineering", "Mathematics", "Other"];

Then specify the width and height of the donut chart and the radius length
and scale for arc length.

var w = 350,
h = 350,
r=w/ 2,
a = pv.Scale.linear(0, pv.sum(data)).range(0, 2 * Math.PI);

‘E CHAPTER 5: VISUALIZING PROPORTIONS

The width and height of the donut chart are both 350 pixels, and the radius
(that is, the center of the chart to the outer edge] is half the width, or 175
pixels. The fourth line specifies the arc scale. Here's how to read it. The
actual data is on a linear scale from 0 to the sum of all votes, or total votes.
This scale is then translated to the scale to that of the donut, which is from
0 to 2r radians, or 0 to 360 degrees if you want to think of it in that way.

Next create a color scale. The more votes a category receives, the darker
the red it should be. In Illustrator, you did this by hand, but Protovis can
pick the colors for you. You just pick the range of colors you want.

var depthColors = pv.Scale.linear(0, 172).range("white", "#821122");

Now you have a color scale from white to a dark red (that is #821122) on
a linear range from 0 to 172, the highest vote count. In other words, a cat-
egory with 0 votes will be white, and one with 172 votes will be dark red.
Categories with vote counts in between will be somewhere in between
white and red.

So far all you have are variables. You specified size and scale. To create
the actual chart, first make a blank panel 350 (w) by 350 (h) pixels.

var vis = new pv.Panel()
width(w)
.height(h);

Then add stuff to the panel, in this case wedges. It might be a little confus-
ing, but now look over it line by line.

vis.add(pv.Wedge)

.data(data)

.bottom(w / 2)

Jdeft(w / 2)

JinnerRadius(r - 120)

.outerRadius(r) \ . D
.fi11Style(function(d) depthColors(d)) T !
.strokeStyle("#fff") ’ i i el
.angle(a) & t ' < g
.title(function(d) String(d) + " votes") Lenn
.anchor("center").add(pv.Label) \

.text(function(d) cats[this.index]);

PARTS OF AWHOLE ‘E

The first line says that you're adding wedges to the panel, one for each
point in the data array. The bottom() and left() properties orient the
wedges so that the points are situated in the center of the circle. The
innerRadius() specifies the radius of the hole in the middle whereas the
outerRadius is the radius of the full circle. That covers the structure of the
donut chart.

Rather than setting the fill style to a static shade, fill colors are deter-
mined by the value of the data point and the color scale stored as depth-
Colors, or in other words, color is determined by a function of each point. A
white (#fff] border is used, which is specified by strokeStyle(). The circular
scale you made can determine the angle of each wedge.

To get a tooltip that says how many votes there were when you mouse over
a section, title() is used. Another option would be to create a mouseover
event where you specify what happens when a user places a pointer over
an object, but because browsers automatically show the value of the title
attribute, it's easier to use title(). Make the title the value of each data
point followed by “votes.” Finally, add labels for each section. The only
thing left to do is add May 2009 in the hole of the chart.
vis.anchor("center").add(pv.Label)

.font("bold 14px Georgia")

.text("May 2009"); B Visit http://

This reads as, “Put a label in the center of the chart in bold 14-pixel Geor- book. flowingdata

gia font that says May 2009.” -com/ch05/donut
.htm1 to see the

live chart and view
vis.render(); the source for the
code in its entirety.

The full chart is now built, so now you can render it.

When you open donut.html in your browser, you should see Figure 5-10.

If you're new to programming, this section might have felt kind of daunting,
but the good news is that Protovis was designed to be learned by example.
The library’s site has many working examples to learn from and that you
can use with your own data. It has traditional statistical graphics to the
more advanced interactive and animated graphics. So don't get discour-
aged if you were a little confused. The effort you put in now will pay off

‘l:’ CHAPTER 5: VISUALIZING PROPORTIONS

VALUE AXIS

Indicates scale of

the graph with

values starting at

zero

after you get the hang of things. Now have another look at Protovis in the
next section.

Stack Them Up

In the previous chapter you used the stacked bar chart to show data over
time, but it's not just temporal data. As shown in Figure 5-11, you can also
use the stacked bar chart for categorical data.

4

3

B ‘ WITHIN BAR HEIGHT
i Represents values
v

|

within categories

A

* BARHEIGHT
i Represents total
i values of each
i month
A B & D E F
CATEGORY AXIS

Each bar represents a category with a
stack for each subcategory

FIGURE 5-11 Stacked bar chart with categories

For example, look at approval ratings for Barack Obama as estimated
from a Gallup and CBS poll taken in July and August 2010. Participants

were asked whether they approved or disapproved of how Obama has dealt
with 13 issues.

PARTS OF A WHOLE ‘H

Here are the numbers in table form.

ISSUE APPROVE DISAPPROVE NO OPINION
Race relations 52 38 10
Education 49 40 n
Terrorism 48 45 7
Energy policy 47 42 n
Foreign affairs 44 48 8
Environment 43 51 6
Situation in Iraq 4 53 6
Taxes 41 54 5
Healthcare policy 40 57 3
Economy 38 59 3
Situation in Afghanistan 36 57 7
Federal budget deficit 31 64 5
Immigration 29 62 9

One option would be to make a pie chart for every issue, as shown in Fig-
ure 5-12. To do this in Illustrator, all you have to do is enter multiple rows of
data instead of just a single one. One pie chart is generated for each row.

However, a stacked bar chart enables you to compare approval ratings for
the issues more easily because it's easier to judge bar length than wedge
angles, so try that. In the previous chapter, you made a stacked bar chart
in Illustrator using the Stacked Graph tool. This time you add some simple
interactions.

CREATE AN INTERACTIVE STACKED BAR CHART

Like in the donut chart example, use Protovis to create an interactive
stacked bar chart. Figure 5-13 shows the final graphic. There are two
basic interactions to implement. The first shows the percentage value
of any given stack when you place the mouse pointer over it. The second
highlights bars in the approve, disapprove, and no opinion categories
based on where you put your mouse.

‘H:’ CHAPTER 5: VISUALIZING PROPORTIONS

APPROVAL RATINGS FOR BARACK OBAMA

Recent polls show a 52% approval rating for Barack Obama in race relations.
It is the only issue out of the below thirteen where he has a majority approval.
In eight of the thirteen, results show a majority disapproval.

[APPROVE DISAPPROVE NO OPINION

10% 1 7

a5

Race Education Terrorism

relations*®

Situation Taxes
in Iraq®

Environment

Federal
budget deficit

Situation in Immigration

Afghanistan®

FIGURE 5-12 Series of pie charts

1" 8

Energy Foreign
Policy Affairs

Healthcare
policy

Economy

Results marked with asterisks (*) are
based on a USA Today/Gallup poll
taken July 27 to August 1. Others
based on a Gallup poll August 5 to 8.

PARTS OF AWHOLE ‘H!

APPROVAL RATINGS FOR BARACK OBAMA

Recent Gallup and CBS polls show a 52% approval rating for Barack Obama in
race relations. It is the only issue out of the below thirteen where he has a majority
approval. In eight of the thirteen, results show a majority disapproval.

100%

90 No Opinion

80

70

60
== Disapprove

50
’ 40 —
« B T ?COO 4 Lﬁ
30 = 5
- s
20 u’s‘ [f /
pLo. Approve
0
CH L & O CNTP- ST
'Z;\\OQ C?\@ 0& 0\& (\'?)\ 690 'Q\(b « '5‘9 C}\d QO@ 6\‘_’\@ 0@\\(’ \'5\9
2 > &) N ¥ & -) &P 2 %)
Q¢ &« $ & & & QS N & &
52 & @ & & & P
@ & O o~ 2
&L & 23 2 &
RS & L
S
& <

FIGURE 5-13 Interactive stacked bar chart in Protovis

To start, set up the HTML page and load the necessary Protovis JavaScript
file. b

/

<html> unke I /Z‘"l .

<head> i o fenectt o T
<title>Stacked Bar Chart</title> & L ,,,,/./4 //,y\,\,-#\ﬂ"j!
<script type="text/jav£cr1'pt“ src="protovis-r3.2.js"></script> Wy -

</head> T

<body> \\ . [Mam ﬁcﬁb:\,
<div id="figure-wrapper"> N o

<div id="figure'> - > o

= s
r </div><!-- @end figure --> //)i
b </div><!-- @end figure-wrapper --> e
</body> f‘”FLW\\S F)
</html> L‘ .
QL ' O‘TMN ‘Mﬁ\{ é /h/lx\\v*ﬁﬁ /\/vul')‘ L/C “‘\Lé/wa(g,ﬂ{ s s y\,{[[;ﬂl g %I;V!z e —
! "]/\w) | ccs 3 o =2 AN WV}/)Cé/l
_3.‘ MJN}/{%»V\(Sﬂ < ! /

Z* (<))f‘ Sﬁ//é»é "/'/“‘(1 ONAIN-Y]/U/‘z éLT ’4 ,_‘[—]\J/‘W“\L

D Ue PR Law de 7 rct (tuly A Leed-va p doay !,

‘a CHAPTER 5: VISUALIZING PROPORTIONS

This should look familiar. You did the same thing to make a donut chart
with Protovis. The only difference is that the title of the page is “Stacked
Bar Chart” and there's an additional <div> with a “figure-wrapper” id. We
also haven't added any CSS yet to style the page, because we're saving
that for later.

Now on to JavaScript. Within the figure <div>, load and prepare the data
(Obama ratings, in this case) in arrays.

<script type="text/javascript+protovis">
/var data = {
"Issue":["Race Relations","Education","Terrorism","Energy Policy",
"Foreign Affairs","Environment","Situation in Iraq",

SEVAR | "Taxes","Healthcare Policy","Economy","Situation in Afghanistan",
\ "Federal Budget Deficit","Immigration"],

Yo N 1 "Approve" :[52,49,48,47,44,43,41,41,40,38,36,31,29],
N S "Disapprove":[38,40,45,42,48,51,53,54,57,59,57,64,62],
AT __ 'None':[10,11,7,11,8,6,6,5,3,3,7,5,9]
?ﬁ :J' Hﬁr“ ¥
. \\\\\Xi) </script>

You can read this as 52 percent and 38 percent approval and disapproval
ratings, respectively, for race relations. Similarly, there were 49 percent
and 40 percent approval and disapproval ratings for education.

To make it easier to code the actual graph, you can split the data and store
it in two variables.

var cat = data.Issue;
var data = [data.Approve, data.Disapprove, data.None];

The issues array is stored in cat and the data is now an array of arrays.

Set up the necessary variables for width, height, scale, and colors with the
following:

var w = 400,

h = 250,

x = pv.Scale.ordinal(cat).splitBanded(0, w, 4/5),

y = pv.Scale.linear(0, 100).range(0, h),

fi11 = ["#809EAD", "#B1C0C9", "#D7D6CB"];

The graph will be 400 pixels wide and 250 pixels tall. The horizontal scale
is ordinal, meaning you have set categories, as opposed to a continuous
scale. The categories are the issues that the polls covered. Four-fifths of

PARTS OF AWHOLE ‘E!

the graph width will be used for the bars, whereas the rest is for padding
in between the bars.

The vertical axis, which represents percentages, is a linear scale from 0 to
100 percent. The height of the bars can be anywhere in between 0 pixels to

the height of the graph, or 250 pixels.

Finally, fill is specified in an array with hexadecimal numbers. That's dark
blue for approval, light blue for disapproval, and light gray for no opinion.

You can change the colors to whatever you like.

Next step: Initialize the visualization with specified width and height. The
rest provides padding around the actual graph, so you can fit axis labels.
For example, bottom(90) moves the zero-axis up 90 pixels. Think of this
part as setting up a blank canvas.

var vis = new pv.Panel()
width(w)
.height(h)
.bottom(90)
Jdeft(32)
.right(10)
.top(15);

To add stacked bars to your canvas, Protovis provides a special layout
for stacked charts appropriately named Stack. Although you use this

for a stacked bar chart in this example, the layout can also be used with
stacked area charts and streamgraphs. Store the new layout in the “bar”
variable. \

var bar = vis.add(pv.Layout.Stack)
.layers(data)
x(function() x(this.index))
.y(function(d) y(d))
.layer.add(pv.Bar)
= .fi11Style(function() fill1[this. parent index])
(0~ width(x.range().band)
N .title(function(d) d + "%")
.event("mouseover", function() this.fi11Style("#555"))
.event("mouseout", function()
this.fi11Style(fill[this.parent.index]));

Jon

Another way to think about this chart is as a set of three layers, one each
for approval, disapproval, and no opinion. Remember how you structured

P> If you're not
sure what colors to
use, ColorBrewer
at http://
colorbrewer2.org
is a good place

to start. The tool
enables you to
specify the number
of colors you want

- to use and the type

of colors, and it
provides a color
scale that you can
copy in various
formats. Oto255 at
http://0to255.com
is a more general
color tool, but | use
it often. ‘

‘H CHAPTER 5: VISUALIZING PROPORTIONS

B

Interaction in
Protovis isn't just
limited to mouse
over and out. You
can also set events
for things such as
click and double-
click. See Protovis
documentation for
more details.

those three as an array of three arrays? That goes in Tayers(), where x and
y follow the scales that you already made.

For each layer, add bars using pv.Bar. Specify the fill style with fi11Style().
Notice that we used a function that goes by this.parent.index. This is so
that the bar is colored by what layer it belongs to, of which there are three.
If you were to use this.index, you would need color specifications for every
bar, of which there are 39 (3 times 13). The width of each bar is the same
across, and you can get that from the ordinal scale you already specified.

The final three lines of the preceding code are what make the graph inter-
active. Using title() in Protovis is the equivalent of setting the title attri-
bute of an HTML element such as an image. When you roll over an image
on a web page, a tooltip shows up if you set the title. Similarly, a tooltip
appears as you place the mouse pointer over a bar for a second. Here
simply make the tooltip show the percentage value that the bar represents
followed with a percent sign (%).

To make the layers highlight whenever you mouse over a bar, use event().
On “mouseover” the fill color is set to a dark gray (#555), and when the
mouse pointer is moved off, the baris set to its original color using the
“mouseout” event.

To make the graph appear, you need to render it. Enter this at the end of
our JavaScript.

vis.render();

This basically says, “Okay, we've put together all the pieces. Now draw the
visualization.” Open the page in your web browser (a modern one, such as
Firefox or Safari), and you should see something like Figure 5-14.

Mouse over a bar, and the layer appears highlighted. A tooltip shows up, too.
A few things are still missing, namely the axes and labels. Add those now.

In Figure 5-13, a number of labels are on the bars. It's only on the larger
bars though, that is, not the gray ones. Here's how to do that. Keep in mind
that this goes before vis.render(). Always save rendering for last.
bar.anchor("center").add(pv.Label)
.visible(function(d) d > 11)

.textStyle("white")
.text(function(d) d.toFixed(0));

PARTS OF A WHOLE ‘H

FIGURE 5-14 Stacked bar graph without any labels

For each bar, look to see if it is greater than 11 percent. If it is, a white
label that reads the percentage rounded to the nearest integer is drawn in
the middle of the bar.

Now add the labels for each issue on the x-axis. Ideally, you want to make
oy v all labels read horizontally, but there is obviously not enough space to
7?\—(—— do that. If the graph were a horizontal bar chart, you could fit horizontal
- labels, but for this you want to see them at 45-degree angles. You can
make the labels completely vertical, but that'd make them harder to re/ad /@,H' (l(\ 2alelA

bar.anchor("bottom").add(pv.Label) it o e Sy W) wrg e
.visible(function() !this.parent.index) i h) {/\Dg
\;@Ljf C;NZ .textAlign("right") — = N 2 bl N
,, PENTTT _— .top(260) SN s
L “ﬁiﬂ“ﬁ\i\l“fi)W Jeft(function() x(this.index)+20) <= fHavhye A odA ot Y > /[
e R .textAngleé(-Math.PI /) & =t Ny Cpd L
Mﬂw Az(t’;ext(functwn() cat[this.index]); //, /(\.,) Tn ot
f‘ 2+ This works in the same way you added number labels to the middle of "«(“ e
“~ each bar. However, this time around add labels only to the bars at the bot-
/,/ tom, that is, the ones for approval. Then right-align the text and set their ‘/—v‘f 7
e absolute vertical position with textAlign() and top(). Their x-position is 9'50 \\\
ID0ADD odwsnsy Sipe T NI
/// /// /)ﬂv" '\/(jq :ia,\), w Ty k:["\ V,H\.»J-C,L_
MNJD) « u\ CALADY

SUNNW Y € e _cn (ate ITre A "-Lr’f»Cf)

)

j CHAPTER 5: VISUALIZING PROPORTIONS

based on what bar they label, each is rotated 45 degrees, and the text is
the category.

That gives the categorical labels. The labels for values on the vertical axis
are added in the same way, but you also need to add tick marks.

vis.add(pv.Rule)
.data(y.ticks(Q))
.bottom(y)
left(-15)
.width(15)
.strokeStyle(function(d) d > 0 ? "rgba(0,0,0,0.3)" : "#000")
.anchor("top").add(pv.Label)
.bottom(function(d) y(d)+2)
.text(function(d) d == 100 ? "100%" : d.toFixed(0));

This adds a Rule, or lines, according to y.ticks(. If the tick mark is for
anything other than the zero line, its color is gray. Otherwise, the tick is
black. The second section then adds labels on top of the tick marks.

100%

90

80

FIGURE 5-15 Adding the horizontal axis

PARTS OF A WHOLE ‘H

You're still missing the horizontal axis, so add another Rule, separately to
get what you see in Figure 5-15.

~

~
| [)
vis.add(pv.Rule) ;190 %ﬁc | QJJ'

]
A A
— VYWMAR K @

.bottom(y) = - LR 3
W a0 WA
Jdeft(-15) (PN g L }v/ 2)
.right(0) O’J‘A’""l" A S‘ P : ANl =
.strokeStyle("#000") bAr Al oo T

:)v"\ I«’j A
Lead-in copy and remaining labels are added with HTML and CSS. There
are entire books for web design though, so I'll leave it at that. The cool
thing here is that you can easily combine the HTML and CSS with Protovis,

which is just JavaScript and still make it look seamless.

Hierarchy and Rectangles

In 1990, Ben Shneiderman, of the University of Maryland, wanted to visu-
alize what was going on in his always-full hard drive. He wanted to know
what was taking up so much space. Given the hierarchical structure of
directories and files, he first tried a tree diagram. It got too big too fast to
be useful though. Too many nodes. Too many branches.

The treemap was his solution. As shown in Figure 5-16, it's an area-based
visualization where the size of each rectangle represents a metric. Outer
rectangles represent parent categories, and rectangles within the parent
are like subcategories. You can use a treemap to visualize straight-up pro-
portions, but to fully put the technique to use, it's best served with hierar-
chical, or rather, tree-structured data.

e
PARTS OF AREA
A WHOLE Size of rectangles are
Sum of all proportional to
rectangle areas | values
represent a
whole, or 100
percent

SUB-RECTANGLES
Represent data’s
hierarchical tree structure

FIGURE 5-16 Treemap generalized

P To see and
interact with the
stacked bar graph,
visit http://
book.flowingdata
.com/ch05/

. stacked-bar.html.

Check out the
source code to see
how HTML, CSS,
and JavaScript fit
together.

P See http://

datafl.ws/11m

for a full history

of treemaps and
additional ex-
amples described
by the creator, Ben
Shneiderman.

‘H:’ CHAPTER 5: VISUALIZING PROPORTIONS

- —

R is an open-
source software
environment for
statistical comput-
ing. You can
download it for
free from www
.r-project.org/.
The great thing
about R is that
there is an active
community around
the software that
is always develop-
ing packages to
add functionality.
If you're looking to
make a static chart,
and don't know
where to start,

the R archives are
a great place to
look.

CREATE A TREEMAP

Illustrator doesn’t have a Treemap tool, but there is an R package by Jeff
Enos and David Kane called Portfolio. It was originally intended to visual-
ize stock market portfolios (hence the name), but you can easily apply it to
your own data. Look at page views and comments of 100 popular posts on
FlowingData and separate them by their post categories, such as visual-
ization or data design tips.

As always, the first step is to load the data into R. You can load data

directly from your computer or point to a URL. Do the latter in this example
because the data is already available online. If, however, you want to do the
former when you apply the following steps to your own data, just make sure
you put your data file in your working directory in R. You can change your
working directory through the Miscellaneous menu. -

Loading a CSV file from a URL is easy. It's only one line of code with the
read.csvOfunction in R (Figure 5-17).

posts <- read.csv("http://datasets.flowingdata.com/post-data.txt")

BOOG i bR Console i =
- i

R version 2.8.8 (2808-10-20)

Copyright (C) 2888 The R Foundation for Staotisticel Computing

ISBN 3-980051-87-9

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certoin conditions.

Type 'license()' or ‘licence()' for distribution details.
Natural language support but ruaning in on English locale

R is a collaborative project with many contributors.

Type 'contributors()’ for more information and

‘citotion()' on how to cite R or R peckages in publicotions

Type 'demo()' for some demos, ‘help()' for on-line help, or

"help.stort()' for on HTML browser interface to help,

Type 'g(})' to guit R.

> data <- reod.csv("http://datasets.flowingdata.com/post-data.txt™)

FIGURE 5-17 Loading CSVin R

Easy, right? We've loaded a text file (in CSV format) using read.csv() and
stored the values for page views and comments in a variable called posts. As
mentioned in the previous chapter, the read.csv() function assumes that your
data file is comma-delimited. If your data were say, tab-delimited, you would
use the sep argument and set the value to \t. If you want to load the data from
a local directory, the preceding line might look something like this.

posts <- read.csv('post-data.txt")

PARTS OF A WHOLE ‘H

This is assuming you've changed your working directory accordingly. For
more options and instructions on how to load data using the read.csvQ
function, type the following in the R console:

?read.csv

Moving on, now that the data is stored in the posts variable, enter the fol-
lowing line to see the first five rows of the data.

posts[1:5,]

You should see four columns that correspond to the original CSV file, with
id, views, comments, and category. Now that the data is loaded in R, make
use of the Portfolio package. Try loading it with the following:

Tibrary(portfolio)

Get an error? You probably need to install the package before you begin:

install.packages("portfolio")

You should load the package now. Go ahead and do that. Loaded with no
errors? Okay, good, now go to the next step.

The Portfolio package does the hard work with a function called map.market().

The function takes several arguments, but you use only five of them.

'/rnfal?)]al—ri{et(*id?a;‘ﬁa$id, area=posts$views, group=posts$category,
color=posts$comments, main="FlowingData Map")

The id is the column that indicates a unique point, and you tell R to use
views to decide the areas of the rectangles in the treemap, the categories
to form groups, and the number of comments in a post to decide color.

Finally, enter FlowingData Map as the main title. Press Enter on your key-

board to get a treemap, as shown in Figure 5-18.

It's still kind of rough around the edges, but the base and hierarchy is set

up, which is the hard part. Just like you specified, rectangles, each of which

represent a post, are sized by the number of page views and sorted by

category. Brighter shades of green indicate posts that received more com-

ments; posts with a lot of views don’t necessarily get the most comments.

You can save the image as a PDF in R and then open the file in Illustrator.
All regular edit options apply. You can change stroke and fill colors, fonts,
remove anything extraneous, and add comments if you like.

=

You can also
install packages
in R through the
user interface. Go
to Packages &
Data = Package
Installer. Click Get
List, and then find
the package of
interest. Double-
click to install.

J CHAPTER 5: VISUALIZING PROPORTIONS

P> The New York
Times used an
animated treemap
to show changes
in the stock

' market during the
- financial crisis

| inits piece titled
“How the Giants

. of Finance Shrank,

- Then Grew, Under
the Financial

| Crisis.” See itin

action at http://
nyti.ms/9JUkWL.

) MiscellaneousQuotesnor

twork Visualizati EI9jects
Software [lEloHals 58
Mapping o
)y VisualizatiL

if-surveillanc Statistics 8

tistical Visualiza!

ata Design Tipneous VisudiStaken Dats

Artistic Visualization Data Sources

Fealured

Visualization Infographics

FIGURE 5-18 Default treemap in R

For this particular graphic you need to change the scale of the legend

that goes from -90 to 90. It doesn’'t make sense to have a negative scale
because there’'s no such thing as a negative number of comments. You can
also fix the labels. Some of them are obscured in the small rectangles.
Size the labels by popularity instead of the uniform scale it now has using
the Selection tool. Also thicken the category borders so that they're more
prominent. That should give you something like Figure 5-19.

There you go. The graphic is much more readable now with unobscured
labeling and a color scale that makes more sense. You also got rid of the
dark gray background, which makes it cleaner. Oh, and of course, you
included a title and lead-in to briefly explain what the graphic shows.

Because the Portfolio package does most of the heavy lifting, the only
tough part in applying this to your own data is getting it into the right
format. Remember, you need three things. You need a unique id for each
row, a metric to size rectangles, and parent categories. Optionally, you
can use a fourth metric to color your rectangles. Check out Chapter 2,
“Handling Data,” for instructions on how to get your data into the format
you need.

PROPORTIONS OVER TIME ‘Il!

FLOWINGDATA MAP

Below are popular posts on FlowingData. Each rectangle represents a post. Size
represents number of views and brighter green indicates more comments.

Network Projects Miscellaneous

Visualization
Software

i Ugly
Statistical Visualization | Self

. : . surveillance
Visualization

Data Design Miscellaneous
Tips Visualization

Visualization Infographics

0 comments 45 90

FIGURE 5-19 Revised treemap from R to Illustrator

Proportions over Time

Often you'll have a set of proportions over time. Instead of results for a
series of questions from a single polling session, you might have results
from the same poll run every month for a year. You're not just interested in
individual poll results; you also want to see how views have changed over
time. How has opinion changed from one year ago until now?

This doesn't just apply to polls, of course. There are plenty of distribu-
tions that change over time. In the following examples, you take a look at
the distribution of age groups in the United States from 1860 to 2005. With
improving healthcare and average family size shrinking, the population as
a whole is living longer than the generation before.

‘E CHAPTER 5: VISUALIZING PROPORTIONS

Stacked Continuous

Imagine you have several time series charts. Now stack each line on top
of the other. Fill the empty space. What you have is a stacked area chart,
where the horizontal axis is time, and the vertical axis is a range from 0 to
100 percent, as shown in Figure 5-20.

VALUE AXIS {7 4

Indicates scale of ! o

the graph with STACK HEIGHT 4 4 WITHIN STACK HEIGHT
values starting at 3 Shows total of all i Values within a

zero. Often — categories during i i category during

normalized to given time i given time

show proportions 5 : v

Jan. Feb. Mar. Apr. May June

TIME AXIS

Months represented on a continuous scale
FIGURE 5-20 Stacked area chart generalized

So if you were to take a vertical slice of the area chart, you would get the
distribution of that time slice. Another way to look at it is as a series of
stacked bar charts connected by time.

CREATE A STACKED AREA CHART

In this example, look at the aging population. Download the data at http://
book.flowingdata.com/ch05/data/us-population-by-age.x1s. Medicine and
healthcare have improved over the decades, and the average lifespan

PROPORTIONS OVER TIME ‘E!

continues to rise. As a result, the percentage of the population in older age
brackets has increased. By how much has this age distribution changed over
the years? Data from the U.S. Census Bureau can help you see via a stacked
area chart. You want to see how the proportion of older age groups has
increased and how the proportion of the younger age groups has decreased.

You can do this in a variety of ways, but o]

first use Illustrator. For the stacked area
graph, it comes in the form of the Area
Graph tool (Figure 5-21).

[“ﬂ Colurnr\n Graph 'l;oul 7 £i]]
hﬂl Stacked Column Graph Toal
2 Bar Graph Too!

E Stacked Bar Graph Tool

[Line Graph Tool
% ;

|52 Scatter Graph Tool
@ Pie Graph Tool
@ Radar Graph Too!

Click and drag somewhere on a new
document, and enter the data in the
~ spreadsheet that pops up. You're famil-

iar with the load data, generate graphic,
and refine process now, right?

FIGURE 5-21 Area Graph Tool
You can see a stacked area chart, as

shown in Figure 5-22, after you enter
the data.

120 -
100
80
60
40
20

FIGURE 5-22 Default stacked area chart in Illustrator

The top area goes above the 100 percent line. This happened because
P the stacked area graph is not just for normalized proportions or a set of
values that add up to 100 percent. It can also be used for raw values, so
if you want each time slice to add up to 100 percent, you need to normal-
ize the data. The above image was actually from a mistake on my part; |
entered the data incorrectly. Oops. A quick fix, and you can see the graph

‘H CHAPTER 5: VISUALIZING PROPORTIONS

in Figure 5-23. Although, you probably entered the data correctly the first
time, so you're already here.

100
80
60
Be careful when 20
you enter data
manually. A lot 0 |
of silly mistakes ‘
FIGURE 5-23 Fixed area chart
come from
]E:z:lzar:relr;(g):it: Keep an eye out for stuff like this in your graph design though. It's better to
I — spot typos and small data entry errors in the beginning than it is to finish a
' design and have to backtrack to figure out where things went wrong.
Now that you have a proper base, clean up the axis and lines. Make use of
the Direct Selection tool to select specific elements. | like to remove the
vertical axis line and leave thinner tick marks for a cleaner, less clunky
look, and add the percentage sign to the numbers because that’s what
we're dealing with. | also typically change the stroke color of the actual
graph fills from the default black to a simpler white. Also bring in some
shades of blue. That takes you to Figure 5-24.
100% —
80% —
60%
40% —
20% —)
0%

FIGURE 5-24 Modified colors from default

PROPORTIONS OVER TIME ‘H
=

Again, this is just my design taste, and you can do what you want. Color m

selection can also vary by case. The more graphs that you design, the bet- Use colors that
ter feel you'll develop for what you like and what works best. fit your theme
and guide your
readers’ eyes with
varying shades.

Are you missing anything else? Well, there are no labels for the horizontal
axis. Now put them in. And while you're at it, label the areas to indicate the
age groups (Figure 5-25).

Change
since 1860
100% — S ST
65 and older +9.7 pet. pts
80% —
+14.2
20 to 44
60% —
-0.3
40% —
20% — -15.1
0% — SEBSGETUN B P e T R -8.6

1860 1880 1900 1920 1940 1960 1980 2000 2005

FIGURE 5-25 Labeled stacked area chart

| also added annotation on the right of the graph. What we're most inter-
ested in here is the change in age distribution. We can see that from the
graph, but the actual numbers can help drive the point home.

Lastly, put in the title and lead-in copy, along with the data source on the
bottom. Tweak the colors of the right annotations a little bit to add some
more meaning to the display, and you have the final graphic, as shown in
Figure 5-26.

‘H CHAPTER 5: VISUALIZING PROPORTIONS

AN AGING POPULATION

In 1860, an estimated 13.1 percent of the U.S. population was 45 years or older.
In 2005, the estimate is up to 23.9 percent.

Change
since 1860
100% — sommmmemmonms R e e S s e B R e g ™
‘ — 65 years and older +9.7 pct. pts.
80% —
+14.2
60% — AHEEL 2 e e e e T
-0.3
40% —
20% — o -15.1
Under 5 : srceBil P
SR N e e -8.6

1860 1880 1900 1920 1940 1960 1980 2000 2005
Source: U.S. Census

FIGURE 5-26 Final stacked area chart

CREATE AN INTERACTIVE STACKED AREA CHART

One of the drawbacks to using stacked area charts is that they become
hard to read and practically useless when you have a lot of categories and
data points. The chart type worked for age breakdowns because there were
only five categories. Start adding more, and the layers start to look like thin
strips. Likewise, if you have one category that has relatively small counts,

it can easily get dwarfed by the more prominent categories. Making the
stacked area graph interactive, however, can help solve that problem.

You can provide a way for readers to search for categories and then adjust
the axis to zoom in on points of interest. Tooltips can help readers see
values in places that are too small to place labels. Basically, you can take

PROPORTIONS OVER TIME ‘E

data that wouldn't work as a static stacked area chart, but use it with an

interactive chart, and make it easy to browse and explore. You could do s
this in JavaScript with Protovis, but for the sake of learning more tools Hamglioyager
vasceriptwi r ' g by Martin Wat-

(because it's super fun), use Flash and ActionScript. tenibers made e

interactive stacked

e e e s area chart popu-
. Online visualization has slowly been shifting away from Flash lar. It is used to
i toward JavaScript and HTML5, but not all browsers support the show baby names
latter, namely Internet Explorer. Also, because Flash has been - over time, and the
around for years, there are libraries and packages that make cer- » graph automati-
tain tasks easier than if you were to try to do it with native browser .~ cally updates as
functionality. . you type names

in the search box.
Try it out at www
Luckily you don’t have to start from scratch. Most of the work has already =~ | .babynamewizard |
been done for you via the Flare visualization toolkit, designed and main- .com/voyager-. |
tained by the UC Berkeley Visualization Lab. It's an ActionScript library, 4
which was actually a port of a Java visualization toolkit called Prefuse.
We'll work off one of the sample applications on the Flare site, JobVoyager,
which is like NameVoyager, but an explorer for jobs. After you get your
development environment set up, it's just a matter of switching in your
data and then customizing the look and feel.

You can write the code completely in ActionScript and then compile it into
a Flash file. Basically this means you write the code, which is a language
that you understand, and then use a compiler to translate the code into
bits so that your computer, or the Flash player, can understand what you
told it to do. So you need two things: a place to write and a way to compile.

The hard way to do this is to write code in a standard text editor and then
use one of Adobe’s free compilers. | say hard because the steps are defi-
nitely more roundabout, and you have to install separate things on your

computer.
The easy way to do this, and the way | highly recommend if you're plan- m ST

ning on doing a lot of work in Flash and ActionScript, is to use Adobe I Download
Flex Builder. It makes the tedious part of programming with ActionScript | Flare for free at }7
quicker, because you code, compile, and debug all in the same place. http://flare E

The downside is that it does cost money, although it’s free for students. . .prefuse.org/.

‘H:’ CHAPTER 5: VISUALIZING PROPORTIONS

If you're not sure if it's worth the money, you can always download a free
trial and make your decision later. For the stacked area chart example, I'll
explain the steps you have to take in Flex Builder.

m At the time of this writing, Adobe changed the name of Flex

Builder to Flash Builder. They are similar but there are some varia-
tions between the two. While the following steps use the former,
you can still do the same in the latter. Download Flash Builder at
www . adobe . com/products/flashbuilder/. Be sure to take advan-
tage of the student discount. Simply provide a copy of your stu-
dent ID, and you get a free license. Alternatively, find an old,
lower-priced copy of Flex Builder.

When you've downloaded and installed Flex Builder, go ahead and open it;
you should see a window, as shown in Figure 5-27.

@800

frs

1O Q- @] ()0 £ [Flex Develop...
T =g =8

e

P] Jegxilsg

FIGURE 5-27 Initial window on opening Flex Builder

Right-click the Flex Navigator (left sidebar) and click Import. You'll see a
pop-up that looks like Figure 5-28.

Select Existing Projects into Workspace and click Next. Browse to where
you put the Flare files. Select the flare directory, and then make sure
Flare is checked in the project window, as shown in Figure 5-29.

PROPORTIONS OVER TIME

Select
Create new projects from an archive file or directory.

Select an import source:

(type filter text \

¥ (= General
@‘ Archive File
eO‘ Breakpoints
% Existing Projects into Workspace
’:J‘ File System
L preferences
> &cvs
» (= Flex Builder
» (= Team

@ < Back) (“'Next’ 3 Finish) (Cancel)

FIGURE 5-28 Import window in Flex Builder

Import Projects o s
Select a directory to search for existing Eclipse projects. B

e Select root directory: {/Users/Nathan/Documents/Flex Builder 3lﬂare’ (Browse...)

(O select archive file: (" Browse...
Projects:
e

Deselect All

™ Copy projects into workspace

@ (<Back) { Next>) M LCam:el)

FIGURE 5-29 Existing projects window

‘H:’ CHAPTER 5: VISUALIZING PROPORTIONS

P> Visit http://
datafl.ws/16r to
try the final visual-
ization and to see
how the explorer
works with con-
sumer spending.

Do the same thing with the flare.apps folder. Your Flex Builder window
should look like Figure 5-30 after you expand the flare.apps/flare/apps/
folder and click JobVoyager.as.

Titbimanan i3] =

\-packoge flare.apps
{
3 import Flare.animate.Transitioner;

import flare.data.DataSet;
import flare.data.DataSource;
import flare.display.TextSprite;

» Gafare
v []g flare.apps
» (= bin-debug

> Eetc 3 t fl thod:

bl import flare.query.methods.ca;
» & hml-template import Flare.query.methods.iff;
v @src

3 import flare.util.Orientation;
v (& fare 10 import Flare.util.Shapes;
v (= apps 1 import flare.util.Strings;

= Appas 1 import Flare.vis.Visualization;

¥3) ipendericycrad 1 import Flare.vis.controls.ClickControl;
= 14 import flare.vis.controls.HoverControl;
0] JobVoyager.as 18 import Flare.vis.controls.TooltipControl;

1) PackageMap.as 1
W verdana TTF 1
2+ widgets

import Flare.vis.data.Data;
import Flare.vis.data.DataSprite;
1 import Flare.vis.data.NodeSprite;
1 import Flarc.vis.events.SelectionEvent;
import Flare.vis.events.TooltipEvent;
import Flare.vis.legend.Legend;
import flare.vis.legend.LegendItem;
import Flare.vis.operator. filter.VisibilityFilter;
import Flarc.vis.operator.label.StackedArcalabeler;
import Flare.vis.operator.layout.StackedArealayout;
import Flare.widgets.ProgressBar;
import flare.widgets.SearchBox;

v

import flash.display.Shape;

import flash.events.Event;

import Flash.filters.DropShadowfilter;
import flash.geom.Rectangle;

import flash.net.URLLoader;

import flash.text.TextFormat;

[SWF (backgroundColor="¢FFFFFF", FrameRate-"30")]
public class JobVoyager extends App r;

oRiEha hemifnaanacafany

e | writable | tnsert f1

eepleE

FIGURE 5-30 JobVoyager code opened

If you click the run button right now (the green button with the white play
triangle at the top left), you should see the working JobVoyager, as shown
in Figure 5-31. Get that working, and you're done with the hardest part: the
setup. Now you just need to plug in your own data and customize it to your
liking. Sound familiar?

Figure 5-32 shows what you're after. It's a voyager for consumer spending
from 1984 to 2008, as reported by the U.S. Census Bureau. The horizontal
axis is still years, but instead of jobs, there are spending categories such
as housing and food.

Now you need to change the data source, which is specified on line 57 of
JobVoyager.as.

private var _url:String = "http://flare.prefuse.org/data/jobs.txt";

PROPORTIONS OVER TIME ‘I!

Reported Occupations - U.S. Labor Force, 1850 - 2000 (source: http:/ipums.or¢
> @ All © Male = Female

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%

1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

FIGURE 5-31 JobVoyager application

Change the _url to point at the spending data available at http://datasets
.flowingdata.com/expenditures.txt. Like jobs.txt, the data is also a tab-
delimited file. The first column is year, the second category, and the last
column is expenditure.

private var _url:String =
"http://datasets.flowingdata.com/expenditures.txt";

Now the file will read in your spending data instead of the data for jobs.
Easy stuff so far.

The next two lines, line 58 and 59, are the column names, or in this case,
the distinct years that job data was available. It's by decade from 1850 to
2000. You could make things more robust by finding the years in the loaded
data, but because the data isn't changing, you can save some time and
explicitly specify the years.

‘H CHAPTER 5: VISUALIZING PROPORTIONS

Search:

100%

Apparel
Cash Contributions

Entertainment

90%
80%
70%
60%

50%
&

40%

Miscellaneou:

30%

Personal Insurance

20%

10%

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

FIGURE 5-32 Interactive voyager for consumer spending

The expenditures data is annual from 1984 to 2008, so Change lines 58-59
accordingly.
private var _cols:Array =

[1984,1985,1986,1987,1988,1989,1990,1991,1992,

1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,
2003,2004,2005,2006,2007,2008];

Next change references to the data headers. The original data file (jobs.txt]

has four columns: year, occupation, people, and sex. The spending data has

only three columns: year, category, and expenditure. You need to adapt the

code to this new data structure. ,\

PROPORTIONS OVER TIME ‘E!

Luckily, it's easy. The year column is the same, so you just need to change
any people references to expenditure (vertical axis) and any occupation
references to category (the layers). Finally, remove all uses of gender.

At line 74 the data is reshaped and prepared for the stacked area chart. It
specifies by occupation and sex as the categories [that is, layers] and uses
year on the x-axis and people on the y-axis.

var dr:Array = reshape(ds.nodes.data, ["occupation',"sex"],
"year", "people", _cols);

Change it to this:

var dr:Array = reshape(ds.nodes.data, ["category'],

"year", "expenditure", _cols);

You only have one category (sans sex], and that’s uh, category. The x-axis
is still year, and the y-axis is expenditure.

Line 84 sorts the data by occupation (alphabetically) and then sex (numeri-
cally). Now just sort by category:

data.nodes.sortBy("data.category");

Are you starting to get the idea here? Mostly everything is laid out for you.
You just need to adjust the variables to accommodate the data.

Line 92 colors layers by sex, but you don’t have that split in the data, so you
don’t need to do that. Remove the entire row:

data.nodes.setProperty("fillHue", iff(eq("data.sex",1), 0.7, 0));

We'll come back to customizing the colors of the stacks a little later.

Line 103 adds labels based occupation:

_vis.operators.add(new StackedArealabeler("data.occupation"));

You want to label based on spending category, so change the line
accordingly:

_vis.operators.add(new StackedArealabeler("data.category"));

Lines 213-231 handle filtering in JobVoyager. First, there's the male/
female filter; then there’s the filter by occupation. You don’t need the for-
mer, so you can get rid of lines 215-218 and then make line 219 a plain if
statement.

|

There's some
great open-source
work going on in
visualization, and
although coding
can seem daunting
in the beginning,
many times you
can use existing
code with your
own data just by
changing variables.
The challenge is
reading the code
and figuring out
how everything
works.

‘H CHAPTER 5: VISUALIZING PROPORTIONS

Similarly, lines 264-293 create buttons to trigger the male/female filter.
We can get rid of that, too.

You're close to fully customizing the voyager to the spending data. Go back
to the filter() function at line 213. Again, update the function so that you
can filter by the spending category instead of occupation.

Here's line 222 as-is:

var s:String = String(d.data["occupation"]).toLowerCase();

Change occupation to category:

var s:String = String(d.data["category"]).toLowerCase();

Next up on the customization checklist is color. If you compiled the code
now and ran it, you would get a reddish stacked area graph, as shown in
Figure 5-33. You want more contrast though.

Color is specified in two places. First lines 86-89 specify stroke color and
color everything red:

shape: Shapes.POLYGON,

TineColor: 0,

fillvalue: 1,
fillSaturation: 0.5

Then line 105 updates saturation (the level of red), by count. The code for
the SaturationEncoder() is in lines 360-383. We're not going to use satura-
tion; instead, explicitly specify the color scheme.

First, update lines 86-89 to this:

shape: Shapes.POLYGON,
TineColor: OxFFFFFFFF

Now make stroke color white with lineColor. If there were more spending
categories, you probably wouldn’t do this because it'd be cluttered. You
don't have that many though, so it'll make reading a little easier.

Next, make an array of the colors you want to use ordered by levels. Put it
toward the top around line 50:

private var _reds:Array = [0OxFFFEFOD9, OxFFFDD49E, OxFFFDBB84, OxFFFC8D59,
O0xFFE34A33, 0xFFB30000];

PROPORTIONS OVER TIME ‘H

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

FIGURE 5-33 Stacked area graph with basic coloring

| used the ColorBrewer (referenced earlier) for these colors, which sug-
gests color schemes based on criteria that you set. It's intended to choose
colors for maps but works great for general visualization, too.

Now add a new ColorEncoder around line 110:

var colorPalette:ColorPalette = new ColorPalette(_reds);
vis.operators.add(new ColorEncoder("data.max", "nodes",
"fi11Color", null, colorPalette));

‘H CHAPTER 5: VISUALIZING PROPORTIONS

m If you get an error when you try to compile your code, check the

top of JobVoyager.as to see if the following two lines to import the
ColorPallete and Encoder objects are specified. Add them if they
are not there already.

import "are.util.palette.*;

import “are.vis.operator.encoder.*;

Ta Da! You now have something that looks like what we're after (Fig-

ure 5-32]. Of course, you don't have to stop here. You can do a lot of things
with this. You can apply this to your own data, use a different color scheme,
and further customize to fit your needs. Maybe change the font or the tool-
tip format. Then you can get fancier and integrate it with other tools or add
more ActionScript, and so on.

Point-by-Point

Y, One disadvantage of the stacked area graph is that it can be hard to see
'L trends for each group because the placement of each point is affected by

A N\ ~ the points below it. So sometimes a better way is to plot proportions as a

I ‘ (r_" straight up time series like the previous chapter covered.

S " Luckily, it's easy to switch between the two in Illustrator. The data entry is
<) <) =) thesame, soyou just need to change the graph type. Select the line plot

instead of the stacked area in the beginning, and you get this, the default
graph in Figure 5-34.

Clean up and format to your liking in the same way you did with the time
series examples, and you have the same data from a different point of view
(Figure 5-35).

It's easier to see the individual trends in each age group with this time
series plot. On the other hand, you do lose the sense of a whole and dis-
tributions. The graph you choose should reflect the point you” want to get
across or what you want to find in your data. You can even show both views
if you have the space.

PROPORTIONS OVER TIME ‘ﬂ

[

—

50—

40

30

20

10

0

FIGURE 5-34 Default line plot

AN AGING POPULATION

In 1860, an estimated 13.1 percent of the U.S. population was 45 years or older.
In 2005, the estimate is up to 23.9 percent.

40%

30%

20%

10%

0%

2010 44 years o . v /\
5t0 19

Under 5

45 to 64

65 and over

1860 1880 1900 1920 1940 1960 1980 2000

Source: U.S. Census

FIGURE 5-35 Labeled line plot cleaned up

j CHAPTER 5: VISUALIZING PROPORTIONS

Wrapping Up

The main thing that sets proportions apart from other data types is that
they represent parts of a whole. Each individual value means something,
but so do the sum of all the parts or just a subset of the parts. The visual-
ization you design should represent these ideas.

Only have a few values? The pie chart might be your best bet. Use donut
charts with care. If you have several values and several categories, con-
sider the stacked bar chart instead of multiple pie charts. If you're looking
for patterns over time, look to your friend the stacked area chart or go for
the classic time series. With these steady foundations, your proportions
will be good to go.

When it comes time to design and implement, ask yourself what you want
to know about your data, and then go from there. Does a static graphic tell
your story completely? A lot of the time the answer will be yes, and that's
fine. If, however, you decide you need to go with an interactive graphic,
map out on paper what should happen when you click objects and what
shouldn't. It gets complicated quickly if you add too much functionality, so
do your best to keep it simple. Have other people try interacting with your
designs to see if they understand what’s going on.

Finally, while you're programming—especially if you're new to code—
you're undoubtedly going to reach a point where you're not sure what to

do next. This happens to me all the time. When you get stuck, there’s no
better place than the web to find your solution. Look at documentation if
it's available or study examples that are similar to what you're trying to do.
Don't just look at the syntax. Learn the logic because that's what's going to
help you the most. Luckily there are libraries such as Protovis and Flare
that have many examples and great documentation.

In the next chapter, we move towards deeper analysis and data interpreta-
tion and come back to your good statistical friend. You put R to good use as
you study relationships between data sets and variables. Ready? Let’s go.

