PRINT THIS PAGE (PAGE SCALING: NONE)

CUBE SECTION - 2 MODULES - EXTERNAL SURFACE

Step 1 Section square in two parts.

Start at midpoint on left side. End at any point on right side.

Do not use this example.

IMPORTANT: Do not use the points shown at left for line endings - passing through them is 0 K . These points are shown in red in Fig. 1 and light pink in Fig. 2.

1. Select one of the sections for your cube from the examples at left (except first section) or sketch your own section in the grids below. Keep the section simple: 2-3 lines maximum.

CUBE SECTION - EXTERNAL SURFACE

Step 2 Rotate/duplicate initial square.

IMPORTANT: Do not use the points shown at left for line endings - passing through them is 0 K . These points are shown in light pink in Fig. 2.

2. Duplicate and mirror the section.

3. Duplicate the two squares and rotate them 180° with pivot on the red dot.

CUBE SECTION - EXTERNAL SURFACE

Step 3 Add top and bottom squares and separate

 the two sections.1. Separate the four squares along the sections. Add the top and bottom squares. This constitutes the external surface of the two modules. Arrow shows how one section was moved from the left to the right, so as not to dangle by a single contact point. This will depend on the specific design.
2. When building the cube, you might want to rearrange the parts so that they all have at least one edge in common.

PRINT THIS PAGE (PAGE SCALING: NONE)

CUBE SECTION - INTERNAL SURFACE

Step 4 Use the given letters to mark any external points of the section that are on the median line.

NOTE: when printing, select Page Scaling: NONE. Check your drawing after printing to verify dimensions. Check both axes: vertical and horizontal.

Distances from points on the median to the center of the cube " Z ".

Face of the cube sectioned along the median.
NOTE: You can use this grid to draw your section at full scale.

CUBE SECTION - INTERNAL SURFACE (EXAMPLE)

Step 4 Use the given letters to mark any external points of the section that are either on the median or...

NOTE: when printing, select Page Scaling: NONE. Check your drawing after printing to verify dimensions. Check both axes: vertical and horizontal.

Distances from points on the median to the center of the cube " Z ".

Bottom edge of the cube

Face of the cube sectioned along the median.
NOTE: You can use this grid to draw your section at full scale.

PRINT THIS PAGE (PAGE SCALING: NONE)

CUBE SECTION - INTERNAL SURFACE

Step 4 Use the given letters to mark any external points that are on the edge of the face/cube.

NOTE: when printing, select Page Scaling: NONE.
Check your drawing after printing to verify dimensions.
Check both axes: vertical and horizontal.

CUBE SECTION - INTERNAL SURFACE

Step 5 Using actual dimensions from the face section (external), in combination with actual dimensions from internal sections (Step 4), construct the internal faces of the cube module. Refer to class demo and use compass and ruler.

CUBE SECTION - INTERNAL SURFACE

1. Start by drawing a segment from the external surface. In this case AE.
2. Center in A and length $A Z$, draw an arc with the compass.
3. Center in E and length EZ, draw a second arc. The intersection of AZ and EZ gives the third point of the first triangle (center of the cube.)
4. Repeat steps 1-3 as needed to determine the complete internal surface.

CUBE SECTION - 3 MODULES

Rotations A similar process can be applied so that the cube is divided into 3 identical modules.

CUBE SECTION - 3 MODULES

Example 1

Student: Nathan Graver

CUBE SECTION - 3 MODULES

Example 2

Student: Mariela Ellis

CUBE SECTION - 3 MODULES

Example 3

CUBE SECTION - 3 MODULES

Example 4

CUBE SECTION - 3 MODULES

Example 4

CUBE SECTION - 3 MODULES

Example 5

CUBE SECTION - 3 MODULES

Example 5

Student: Eugene Wong

CUBE SECTION - 3 MODULES

Example 5 Click on cube to view animation

Student: Eugene Wong
CUBE ANIMATION. Click the image or the link below to see the movie. http://files.trogu.com/trogu/com/documents/trogu_animation_wong_.mov

CUBE SECTION - FINAL MODEL

Cube model (refined)
Photo upload to iLearn

