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Before the three modules are hinged together, they are sectioned 
into a total of six identical modules. This further division is 
helpful when the three finished modules do not fit back together 
physically, usually because of collisions due to undercuts in the 
design of the section.
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Genesis of form.
Motion is at the root of all growth 
Paul Klee  

Although rotational geometry is a difficult 
field of mathematics available only to 
specialists, the physical models that apply 
its principles are highly useful for courses 
in sketching and drawing. Students at 
San Francisco State have found rotational 
geometry to be one of the most valuable 
segments of the drawing course, offering 
such remarks as: “I feel that this project used 
all of the skills that we learned in class, from 
drawing the basic shape in orthographic/
axonometric views to the cubic modules in 
the perspective.” “This project challenged my 
design thinking by taking a 2D object and 
rendering it in a 3D environment.”
I was able to teach this segment of the course 
thanks to the teaching and writings of the 
Italian scholar Giorgio Scarpa (b 1938). This 
presentation introduces his work to English-
speaking specialists, and illustrates how the 
subject can be made useful to design students. 
Giorgio Scarpa taught Descriptive Geometry 
at the Istituto d’Arte of Oristano and Faenza, 
Italy, and Theory of Perception at the Istituto 
Superiore Industrie Artistiche (ISIA) in Faenza. 
His book Modelli di Geometria Rotatoria, which 
was part of a design series edited by the late 
Italian designer Bruno Munari, is the basis of 
this study.  This teaching unit in drawing for 
design uses and applies Scarpa’s principles and 
methods, and tests their validity through the 
construction of physical models built by the 
students. Through this process, students learn 
to apply a visual grammar based on rotational 
movements and folding which transform two-
dimensional shapes into three-dimensional 
solids. These solids are modules derived from 
the sectioning of regular polyhedra such as 
the cube. In theory, any regular polyhedron 
can be used as the basis for the section.

In this study only the cube is used, due to its 
simple, intuitive symmetry.
Drafting and Sketching for Design is a 
required course for all students entering 
the Design and Industry Department at San 
Francisco State University. In the class, all 
drawing is done by hand with drafting tools 
and free hand sketching. The class covers 
orthographic projections, axonometric 
projections, and perspective. These techniques 
are also explored within a unit called Cube 
Section. 
The unit begins with the simple problem: 
dissect a 4˝ x 4˝ x 4˝ cube into two or three 
solid modules (polyhedra), having identical 
surface area, volume, and shape. The three-
dimensional modules that will form the 
final cube can be connected at a later time 
by means of hinges. The connected modules 
can be arranged into open or closed chains. 
The modules may or may not fold back into 
a minimum volume enclosure depending on 
the type and orientation of the hinges used. 
The materials used in this process are pencil, 
paper and tape or glue.
While the students are able to improve 
their manual skills through the use of these 
materials, the alternative use of CAD and 3D 
printing would allow for faster testing of the 
various configurations.
We’ll call the process for the section that 
divides the cube into two modules the “twin” 
section. The process that divides the cube 
into three modules will be called the “triplet” 
section.
Text and images in this handout are adapted 
from an article by the same title. More details 
can be found at the URLs below. Thank you.

Pino Trogu
San Francisco State University
trogu@sfsu.edu
design.sfsu.edu
trogu.com

Cube section – trogu.com/projects/getProject/20051225082001/project_html
Giorgio Scarpa – userwww.sfsu.edu/~trogu/scarpa
This handout and slides – trogu.com/Documents/conference/design-principles-and-practices

Giorgio Scarpa, Modelli di 
Geometria Rotatoria [Models of 
Rotational Geometry]. Bologna: 
Zanichelli, 1978. Cover and 
sample pages: 43, 77, 107.

Fig. 24 – The 1/3 module split in half. 
The resulting 1/6 modules are identical 
and right-handed.

Fig. 26 – The new six modules. Internal (yellow and blue) and external (gray) 
fold-out surface. Completed cube on the right.

Appendix A – Diagrams showing geometric construction used to determine the 
internal measurements of the modules.

Fig. 29 – In this configuration the selected placement of the hinges 
produced a closed chain where the modules cannot fold back into 
their minimal volume of 2 x 2 x 1 cubes. Chain is composed of 
24 identical modules. Each module occupies 1/6 of one cube. Four 
complete cubes compose the chain. Model by Florence Gold Yuen, 
SFSU.

Fig. 28 – The six modules have been hinged along the cube’s half diagonals and 
other segments on the faces. The hinges are shown as dark thick lines in the 
view on the left. Four such groups are connected together in the “closed-chain” 
configuration used for the model seen in Fig. 29 and Fig. 30.

Fig. 27 – Exploded view of the six modules.

Fig. 25 – In a typical chain constructed by 
Scarpa and illustrated in his book, “pairs” of 
symmetrical modules form the basic structure 
of the chain. The modules are repeated 
and hinged together along symmetry axes 
(Modelli, page 62).

Fig. 30 – The same 24 modules seen in Fig. 29 were used to create this chain, 
which folds back into the minimum volume of 2 x 2 x 1 cubes. The location and 
spatial orientation of the hinges needs to be formalized and mapped. We can expand 
this configuration into a larger volume composed of eight cubes, having 48 modules 
hinged together in a similar sequence. Model by Florence Gold Yuen, SFSU.
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Fig. 1 – Start the section of the square at the mid-point on the left edge. End the section at 
any point on the grid on the right edge. Segments can go through red dots but not end on them.
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Fig. 2 – Mirror the original shape 
(square) along the right edge of the square. 
The right edge is the axis of symmetry. 
The points on the section are labeled and 
the distances from those points to the center 
of the cube can be found in the cross section 
drawings. See Appendix A.
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Fig. 3 – Rotate the resulting two squares by 180 degrees 
with center on the midpoint of the right edge. The resulting 
4-square group represents the external surface of the cube, 
minus the top “lid” and the bottom “base”. When folded into 
3D space, the beginning left point and the ending right point 
of the section will match (point C).
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Fig. 4 – Each foldout shape is exactly half the external surface of the 
cube. Each segment along the section will be connected to the center 
of the cube to determine the triangles needed for the foldout surface of 
the internal section. Z: center of cube. BB: base of one of the triangles 
(BBZ).
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Fig. 5 – Points on the face of the cube that are needed for the construction 
of the triangles are labeled A through E. In the example, only points B, 
C, and D are used (5.3). The center of the cube is labeled Z. The two 
points (ends) of each segment on the face are connected to the center point, 
forming unique triangles. In the example, two B points are connected to the 
center of the cube (5.5). By constructing a series of adjacent triangles, we 
determine the internal surface of the sectioned cube. The resulting flat co-
planar foldout shape will then be folded into the appropriate configuration, 
matching the center and the segments along the faces.
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Fig. 7 – Folding sequence of the module from flat polygon to completed solid.

The students document the modules in a series 
of drawings. The drawings are done by hand. 
The examples shown below were drawn on the 
computer for ease of reproduction.
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Fig. 8 – External surface fold-out.
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Fig. 9 – Internal surface fold-out. Fig. 10 – Orthographic views. Fig. 11A and 11B – Isometric views of the modules.
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Fig. 6 – Yellow foldout with vertexes marked. These vertexes 
(yellow) will be matched to points on the external surface (gray).
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Fig. 12 – Given a square 
4˝ x 4˝ and its modular 
grid, draw a segmented 
line that divides the 
square (face of the cube) 
into two separate parts.
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Fig. 14 – Rotate the new shape 
180˚ with center on a new point C. 
We now have a total surface area of 
two squares.

Fig. 15 – This new continuous 
four-part shape occupies exactly 
one third of the external surface 
of the cube. Common boundaries 
(thick lines in the illustration) 
will be folded 90˚ in 3D space.

Fig. 23 – Actual 
modules built 
with card stock. A 
combination of blue 
and yellow board 
is used later in the 
six-module version 
of this cube.

Fig. 21 – The external surface (gray) and the 
internal surface (yellow), flat, at the halfway point of 
folding, and completely folded.
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Fig. 20 – For each segment that is part of the original section, a triangle will be constructed where 
the base is the segment itself, and the two sides are lines connecting the segment with the center of 
the cube (20.3). This is similar to Fig. 5 and 6.

Fig. 18 – Each face is folded at 90 degrees. The top of the 
vertical line in the last image indicates the center of the cube.

Fig. 19 – Take the three identical modules forming the cube 
and set them side by side. They must be identical in shape and 
orientation. The next step is to preserve the equality of the 
modules inside the cube (three equal volumes) as it is outside 
(three equal external surfaces). The internal planes of the 
modules (triangles) need to be determined, in order to fill the 
space completely.

Fig. 17 – With each shape, fold and connect along the 
shared boundaries and edges of the squares. The 90-degree 
folding will yield the three pieces (each 1/3 of the cubic 
space) of the puzzle. These can be fitted back together to 
form the cube.

Fig. 16 – Repeat the process to obtain two additional shapes for a total of three 
identical shapes. We now have, on the plane, the three shapes (four parts in each) 
comprising the full external surface of the cube.

Fig. 22 – The three modules shown side by side and in exploded view. All modules are identical 
and right-handed. Completed cube at right.
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Fig. 13 – Rotate one of the two resulting shapes 180˚ 
with center in C so that the two shapes now share 
a boundary that is part of the edge of the square. In 
addition to rotation, other operations such as translations 
(movements in a straight line along an axis) are possible 
in order to achieve the proper section.


