
  

  

Abstract— Although many metamaterials can change shape, 
this flexibility often comes at the expense of the structural 
integrity which is difficult to preserve in their reconfigured 
mode. In this work, we introduce a transformable, flat-foldable 
shape designed in 1996 by the Italian topology researcher 
Giorgio Scarpa, consisting of a prismatic tetrahedron with 
additional hinges which bisect the walls of the extruded prisms. 
The shape is rigid when unfolded, and when scaled into a 
periodic, space-filling honeycomb, it yields a flat-foldable, 
prismatic metamaterial that preserves its developed, 
structurally sound unfolded state in the absence of external 
stimuli or mechanical loads. However, this new metamaterial is 
still kinematically rigid when only revolute hinges are admitted. 
To overcome the limitation that this improved design still relies 
on bending of the plates and torsional hinges, we introduce 
additional bisecting hinges along the diagonal of eight of the 
twenty-four square plates in the extruded tetrahedral unit cell. 
This modified design, now with only rigid plates and revolute 
hinges throughout the material, preserves both the rigidity and 
the flat-foldability, while also introducing the rigid foldability 
due to the presence of the additional diagonal hinges. A 
kinematic analysis of the folding motion of the tetrahedral unit 
cell is presented, showing how this bisecting technique can be 
generalized to yield auxetic metamaterials with both rigid 
foldability and negative Poisson’s ratio. The straightforward 
bisecting of rigid plates connected by standard revolute hinges 
offers great opportunity for the design of reconfigurable 
metamaterials, mechanisms, and robots that combine flat-
foldability and self-supported structural integrity when 
unfolded. 

I. INTRODUCTION 

Metamaterials, thanks to their constitutive components or 
their structures, have unlocked desirable and exotic properties 
that conventional materials can’t achieve. Origami 
metamaterials are a promising subset of metamaterials because 
of their superior folding properties [1-8]. “Auxetic” structures 
are artificially architected structures that exhibit negative 
Poisson’s ratio [9]. That auxetic property enhances resistance 
to indentation at locations subject to concentrated loads. 
Auxeticity also increases resilience against shear deformation 
and enhances resistance to fracture [10].  In sum: Origami is 
an important conceptual paradigm for designing auxetic 
metamaterials [11, 12]. 
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While many metamaterials can change shape and become 
reconfigurable, this adaptability often compromises their 
structural integrity, making it challenging to preserve their 
reconfigured state. Given that the majority of engineering 
materials utilized in constructing origami metamaterials tend 
to be relatively rigid, there is a particular focus on a subset of 
origami known as rigid origami [13, 14]. Rigid origami allows 
for seamless motion between folded and unfolded states along 
predetermined creases without any stretching or bending of the 
facets, making it particularly noteworthy. Dai and Jones 
pioneered a model for paper folding, assuming the creases to 
be revolute joints and the facets to be links [15-17]. This 
approach paved the way for analyzing rigid origami [18-21] 
from a mechanism perspective, as well as for the origami-
based metamaterials [22, 23]. 

In 1996 the Italian researcher Giorgio Scarpa [24-27] 
invented a “transformable figure” consisting of a prismatic 
tetrahedron with additional hinges that bisect the walls of the 
extruded prisms [28]. When scaled periodically, this novel, 
previously unpublished design renders flat-foldable some rigid 
metamaterials such as “Material #1”, introduced by Overvelde 
and others in 2017 and based on a tiling of tetrahedra and 
octahedra [29]. 

In this work, we introduce Scarpa’s novel technique, in 
which the additional bisecting hinges applied to the prismatic 
walls of extruded polyhedra render these structures flat-
foldable while preserving their rigidity. Scaled into space-
filling honeycombs [30], these extruded polyhedra yield a new 
class of flat-foldable, prismatic metamaterials that preserve 
their developed, structurally sound, unfolded state in the 
absence of external stimuli or mechanical loads [31].  

We found, however,  that new metamaterials based on this 
bisecting technique would not be rigidly foldable since they 
would still rely on bending of the plates and torsional hinges 
[32, 33]. To resolve this limitation, we introduce additional 
bisecting hinges [34] along the diagonal of eight square plates 
in the extruded unit cell. This modified design, with additional 
diagonal hinges now contains only rigid plates and revolute 
hinges throughout. It preserves both rigidity and flat-
foldability.  

The layout is arranged as follows. In section 2, the rigid 
foldability and kinematic modeling of the original prismatic 
tetrahedron is conducted. Section 3 deals with the strategy of 
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adding creases to the original prismatic tetrahedron to enable 
the rigid foldability and negative Poisson’s ratio of the altered 
material. The kinematics of the altered vertices of the 
triangular prisms is conducted with the vector loop method in 
detail, followed by the compatibility analysis of the whole 
altered structure in section 4. Conclusions are outlined in 
section 5. 

II. RIGID FOLDABILITY ANALYSIS OF PRISMATIC 
TETRAHEDRON WITH KINEMATIC MODELING 

The original prismatic tetrahedron is formed by extruding 
four triangular prisms with additional bisecting creases from 
the tetrahedron as shown in Fig. 1. To analyze its rigid 
foldability, the ability to allow a structure to fold about crease 
lines without twisting or stretching component panels, a 
representative triangular prism with six vertices (A, B, C, D, E, 
F) is presented. It is found that central vertices A, C and E are 
composed of four creases while the corner vertices B, D and F 
are composed of six creases. 

 
Figure 1.  Original 1996 prismatic tetrahedron model with six 
representative vertices.  Image courtesy of Giorgio Scarpa’s archive, Castel 
Bolognese, Italy. 

For the four-crease vertex, all of its rotational axes intersect 
at one point, so it can be modeled as a spherical 4R linkage and 
its closure equation can be established based on the Denavit 
and Hartenberg’s (D-H) convention [35] as shown in Fig. 2. 
The zi-axis is aligned with the ith joint axis, the xi-axis is 
defined along the common normal between the (i-1)th and ith 
joint axes and points from the (i-1)th to the ith joint axis and 
the yi-axis is determined by the right-hand rule, the geometric 
conditions for the spherical 4R linkage are 

α!" = α"# = α#$ = α$! =
%
"
	,	

𝑎𝑎!" = 𝑎𝑎"# = 𝑎𝑎#$ = 𝑎𝑎$! = 0.     (1) 

 
Figure 2.  D-H notation of the four-crease vertex A. 

The transformation matrix that transforms the expression 
in the (i+1)th coordinate system to the ith coordinate system is 

𝑸𝑸("#$)" = #
cos 𝜃𝜃" −cos 𝛼𝛼"("#$) sin 𝜃𝜃" sin 𝛼𝛼"("#$) sin 𝜃𝜃"
sin 𝜃𝜃" cos 𝛼𝛼"("#$) cos 𝜃𝜃" − sin 𝛼𝛼"("#$) cos 𝜃𝜃"
0 sin 𝛼𝛼"("#$) cos 𝛼𝛼"("#$)

-   (2) 

and the inverse transformation is 

 

𝑸𝑸"("#$) = #
cos 𝜃𝜃" sin 𝜃𝜃" 0

− cos 𝛼𝛼"("#$) sin 𝜃𝜃" cos 𝛼𝛼"("#$) cos 𝜃𝜃" sin 𝛼𝛼"("#$)
sin 𝛼𝛼"("#$) sin 𝜃𝜃" − sin 𝛼𝛼"("#$) cos 𝜃𝜃" cos 𝛼𝛼"("#$)

-  (3) 

 
According to the closure equation, the following formula can 
be obtained as 

𝑸𝑸21𝑸𝑸32 = 𝑸𝑸41𝑸𝑸34       (4) 
 

where 𝑸𝑸"! and 𝑸𝑸#" are obtained by replacing i in Eq. (2) with 
1 and 2 respectively, while 𝑸𝑸$!  and 𝑸𝑸#$  are obtained by 
replacing i in Eq. (3) with 4 and 3 respectively, and i+1 is taken 
as 1 when i = 4. So the input-output relationship of the four-
crease vertex is obtained as 

 𝜃𝜃! = 𝜃𝜃# = 0, 𝜃𝜃" = 𝜃𝜃$;      (5a)  
or  𝜃𝜃" = 𝜃𝜃$ = 0, 𝜃𝜃! = 𝜃𝜃#.      (5b) 

 
Considering the overall dihedral constraint of the extrusions, 
only Eq. (5a) holds in this structure, which means the joints 1 
and 3 degenerate. A similar kinematic model holds for vertices 
C and E, so we have the triangular prism with only three active 
creases, i.e., creases FB, BD and DF, meaning that it is not 
rigidly foldable. So do the other three triangular prisms. 
Therefore, the whole structure is not rigidly foldable. 

However, we can break the geometric constraints of the 
structure as shown in Fig. 3 to make the model flat foldable. In 
this case, there will be deformation along the creases, and the 
whole model performs as a non-rigid foldable structure. 

 
      (a)                                     (b)                                        (c)                

Figure 3.  Non-rigid folding of prismatic tetrahedron: (a) Stable 
configuration; (b) Partially deformed configuration; (c) Flat-folded 
configuration. 

 

III. ALTERED RIGIDLY FOLDABLE TRIANGULAR PRISM 

A.  Kinematics of the altered six-crease vertex 
In order to make the whole structure rigidly foldable and to 
achieve the auxetic property, which means the whole structure 
squeezes in both directions with a negative Poisson’s ratio, we 
add creases to the structure to increase its degrees of freedom 
(DoF). Considering the four-crease vertex in Fig. 2, we need 
to reactivate the degenerated joints 1 and 3.  Therefore, we add 
two symmetric diagonal creases AG and AH to the four-crease 
vertex A as shown in Fig. 4.  
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Figure 4.  Altered vertex A with two additional symmetric creases. 

The geometric conditions of the altered vertex are 

𝛼𝛼!" = 𝛼𝛼*! =
+
"
, 𝛼𝛼"# = 𝛼𝛼#$ = 𝛼𝛼$, = 𝛼𝛼,* =

+
$
 .  (6) 

Considering the symmetric condition, the DoF of the altered 
crease is two, and we have 

𝜃𝜃"- = 𝜃𝜃*-, 𝜃𝜃#- = 𝜃𝜃,-.       (7) 

The whole structure should be squeezed to achieve the 
auxetic property, so we fold the altered vertex A in Fig. 4 
inward to analyze its motion. To better illustrate the vertex, the 
back view of Fig. 4 is taken as shown in Fig. 5(a). Assuming 
the input angles of the vertex are 𝜃𝜃!- = 𝛼𝛼! and 𝜃𝜃"- = 𝛼𝛼", the 
kinematics of the altered vertex can be solved with the vector 
loop method by calculating the angles 𝜃𝜃#- and 𝜃𝜃$-, which are 
the revolute angles along the creases 𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐴𝐴 respectively. 
Since	 𝐴𝐴𝐴𝐴 ⊥ 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 ⊥ 𝐴𝐴𝑃𝑃 , 𝜃𝜃$- =∠𝐴𝐴𝐴𝐴𝑃𝑃  and it can be 
figured out in ∆𝐴𝐴𝐴𝐴𝑃𝑃 using the cosine law, so we first need to 
calculate the vector 𝒑𝒑$. 

  
Figure 5.  (a) Coordinate system setup and vector loop of the altered vertex; 
(b) Side view from the y-A-z plane. 

Connect BF and HG and establish the coordinate systems 
{𝐴𝐴}, {𝐵𝐵!}, {𝐵𝐵"} as shown in Fig. 5(a), where the x-axis of the 
coordinate system {𝐴𝐴} is parallel with the line FB and its z-axis 
is colinear with QA, the x1-axis of the coordinate system {𝐵𝐵!} 
is along the line AB and its z1-axis is parallel to QA, the x2-axis 
of the coordinate system {𝐵𝐵"} is along the line AB and its z2-
axis is along HB. The transformation from the coordinate 
system {𝐴𝐴} to the coordinate system {𝐵𝐵"} can be decomposed 
into the following processes: a) translation along the x, y, z 
axes with the vector 𝒑𝒑!; b) rotation along the z1 axis with the 

angle -(π-α!)/2; c) rotation along the x1 axis with the angle 
(2π-α"). Therefore, the vector 𝒑𝒑!  can be calculated by the 
coordinate transformation as 

𝒑𝒑! = 𝒑𝒑" = 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝒑𝒑#) ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅(𝑧𝑧, 0−
$%&!
'
2 ⋅ 𝑅𝑅𝑅𝑅𝑅𝑅3𝑥𝑥, (2𝜋𝜋 − 𝛼𝛼')8 ⋅ 𝒑𝒑"

(" (8) 

where 𝒑𝒑!  is the homogeneous coordinate of 𝒑𝒑!  in the 
coordinate system {𝐴𝐴} , 𝒑𝒑"  and 𝒑𝒑"

#!  are the homogeneous 
coordinates of point H represented in the coordinate systems 
{𝐴𝐴}	 and {𝐵𝐵"}  respectively. The vector 𝒑𝒑!  and 𝒑𝒑"

#!  can be 
calculated as 

𝒑𝒑! = :
𝑙𝑙.sin

/&
"

−𝑙𝑙.cos
/&
"

0

B,   𝒑𝒑"
#! = 𝒑𝒑$

#! = #
0 
0
−𝑙𝑙0 

$    (9) 

where 𝑙𝑙. is the side length of the panel. So we have 

𝒑𝒑# = :
𝑙𝑙.sin

/&
"
− 𝑙𝑙.cos

/&
"
sin𝛼𝛼"

−𝑙𝑙.cos
/&
"
− 𝑙𝑙.sin

/&
"
sin𝛼𝛼"

−𝑙𝑙.cos𝛼𝛼"

B     (10) 

Since 𝒑𝒑#  and 𝒑𝒑,  are symmetric about the y-A-z plane, the 
vector 𝒑𝒑$	can be calculated as 

𝒑𝒑$ = 𝒑𝒑, − 𝒑𝒑# = D
−2 E𝑙𝑙.sin

𝛼𝛼!
2 − 𝑙𝑙.cos

𝛼𝛼!
2 sin𝛼𝛼"F

0
0

G 

 (11) 

Therefore, the angle 𝜃𝜃$- can be obtained by the cosine law 

cos𝜃𝜃$- =
1𝑃𝑃𝑃𝑃22222⃗ 1

'
41𝑃𝑃𝑃𝑃22222⃗ 1

'
5|𝒑𝒑(|'

"⋅1𝑃𝑃𝑃𝑃22222⃗ 1⋅1𝑃𝑃𝑃𝑃22222⃗ 1
      (12) 

where %𝑃𝑃𝑃𝑃((((((⃗ % = %𝑃𝑃𝑃𝑃(((((⃗ % = 𝑙𝑙0, further we have 

𝜃𝜃$- = arccos J1 − 2 Esin /&
"
− cos /&

"
sin𝛼𝛼"F

"
L   (13) 

Then we need to figure out 𝜃𝜃#-, which can be obtained by 
two normal vectors 𝒏𝒏!  and 𝒏𝒏"  of the plane AHB and AHP 
respectively. So we need to calculate the vector 𝐴𝐴𝐴𝐴NNNNN⃗  first, 
which requires the angle ∠𝐴𝐴𝐴𝐴𝑃𝑃 known as shown in Fig. 5(a), 
where L is the midpoint of BF and AL is colinear with the y-
axis. Taking the view from the y-A-z plane, the angle ∠𝐴𝐴𝐴𝐴𝑃𝑃 =
𝛽𝛽# is presented as shown in Fig. 5(b), where M is the midpoint 
of HG. So we have 

𝒑𝒑( =
)
$
(𝒑𝒑! + 𝒑𝒑*) = .

0
−𝑙𝑙+cos

,"
$
− 𝑙𝑙+sin

,"
$
sin𝛼𝛼$

−𝑙𝑙+cos𝛼𝛼$ 
9   (14) 

And 𝛽𝛽! can be calculated as 

𝛽𝛽! = arctan J− (𝒑𝒑))*
(𝒑𝒑))+

L       (15) 

where (𝒑𝒑*);, (𝒑𝒑*)< are the projection of  𝒑𝒑* along the z and 
y axes respectively. 

The angle 𝛽𝛽" can be obtained in the triangle △ 𝐴𝐴𝐴𝐴𝐴𝐴. Since  
𝐴𝐴𝐴𝐴 ⊥ 𝐴𝐴𝐴𝐴, 𝐴𝐴𝐴𝐴 ⊥ 𝐴𝐴𝑃𝑃,  AP is perpendicular to the plane HPG. 
MP is located in the plane HPG, so 𝐴𝐴𝐴𝐴 ⊥ 𝐴𝐴𝐴𝐴. Then 𝛽𝛽" can be 
calculated as  
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𝛽𝛽" = arctan J1𝑀𝑀𝑃𝑃
222222⃗ 1
1𝐴𝐴𝑃𝑃22222⃗ 1
L       (16) 

where %𝑀𝑀𝑃𝑃((((((⃗ % = ;𝑙𝑙0
2 − <12 %𝒑𝒑4%=

2
	and %𝐴𝐴𝑃𝑃(((((⃗ % = 𝑙𝑙0. 

So we have  𝛽𝛽# = 𝛽𝛽! + 𝛽𝛽" and 

𝐴𝐴𝐴𝐴NNNNN⃗ = 𝑙𝑙. ⋅ [0, cos(𝜋𝜋 − 𝛽𝛽#), sin(𝜋𝜋 − 𝛽𝛽#)]=    (17) 

Since the structure is folding inward where 𝐴𝐴𝐴𝐴  works as a 
mountain crease, 𝜃𝜃#- is always larger than 𝜋𝜋 during the folding 
process, then we can obtain 

𝜃𝜃#- = 2𝜋𝜋 − arccos E 𝒏𝒏&⋅𝒏𝒏'
|𝒏𝒏&|⋅|𝒏𝒏'|

F     (18) 

where 𝒏𝒏! = 𝒑𝒑# × 𝒑𝒑!  and 𝒏𝒏" = 𝒑𝒑# × 𝐴𝐴𝐴𝐴NNNNN⃗ . Eq. (18) can be 
simplified as  

𝜃𝜃#$ = 2 𝜋𝜋 − arccos ,  &"&#'()&$*&!)+,&%'()-" .&#'()&%)+,&$'()-" 
/|&"|".|'()&%'()-"|".|)+,&%'()-"|" /| &#'()&$|".|&#)+,&$ |".|&!|"

-     

(19) 

where 
𝜎𝜎# = cos𝜎𝜎!cos𝛼𝛼' − 𝜎𝜎)sin𝜎𝜎!  

𝜎𝜎' = 𝜎𝜎)cos𝜎𝜎*  − 𝜎𝜎+sin𝜎𝜎*  

𝜎𝜎! = arctan CD1 − Fsin
𝛼𝛼#
2 − cos

𝛼𝛼#
2 sin𝛼𝛼'F

'
G + arctan I

cos𝛼𝛼'
𝜎𝜎)

J 

𝜎𝜎+ = cos𝜎𝜎* + sin𝜎𝜎*sin𝛼𝛼' 

𝜎𝜎) = sin𝜎𝜎* − cos𝜎𝜎*sin𝛼𝛼' 

𝜎𝜎* =
&!
'
− $

'
. 

Therefore, Eqs. (7), (13) and (19) form the whole set of 
kinematic equations for the altered vertex. 

B. Kinematics of two triangular prisms with altered vertices 
If we only change one vertex A while maintaining the other 

vertices for the triangular prism, as shown in Fig. 6(a), the 
whole structure will remain rigid since the two added creases 
will degenerate due to the other two fixed faces of the prism. 
It is observed from the motion of the physical model that there 
is deformation as well along the creases in the corner vertex. 
If we want to make the whole structure rigidly foldable, we 
also need to add creases along the corner vertex, so we altered 
the corner vertex as shown in Fig. 6(b). 

 
Figure 6.  Double triangular prism group with (a) only one altered vertex 
A; (b) altered central vertex A and corner vertex D. 

Since we only alter one central vertex A of the prism, the 
other four-crease vertices retain the original motion, meaning 
that the other two creases on the adjacent plane remain 
inactive, then we can draw Fig. 7 to calculate the kinematics 
of the altered triangular prism. It requires to find out angles 
𝜃𝜃#-, 𝜃𝜃$-, 𝜃𝜃,-, 𝜃𝜃*-, 𝜃𝜃!!, 𝜃𝜃!", 𝜃𝜃!#, 𝜃𝜃!$, 𝜃𝜃"!, 𝜃𝜃"", 𝜃𝜃"#  with given 𝛼𝛼! , 
𝛼𝛼" , where 𝜃𝜃#-, 𝜃𝜃$-, 𝜃𝜃,-, 𝜃𝜃*-  are rotational angles of vertex A, 
𝜃𝜃!!, 𝜃𝜃!", 𝜃𝜃!#, 𝜃𝜃!$ are rotational angles of the lower triangular 
prism and 𝜃𝜃"!, 𝜃𝜃"", 𝜃𝜃"#  are defined in Fig. 7. Using the 
previous kinematics of the altered six-crease vertex, we can 
derive 𝜃𝜃#-, 𝜃𝜃$-, 𝜃𝜃,-, 𝜃𝜃*-  using Eqs. (7), (13) and (19) where 
 𝜃𝜃!- = 𝛼𝛼!, 𝜃𝜃"- = 𝛼𝛼" , then we only need to figure out 
𝜃𝜃!!, 𝜃𝜃!", 𝜃𝜃!#, 𝜃𝜃!$, 𝜃𝜃"!, 𝜃𝜃"", 𝜃𝜃"#.  

   
Figure 7.  Schematic diagram of two triangular prisms with altered six-
crease vertices. 

Projecting the lower triangular prism along the line BO, we 
can obtain the projection in Fig. 8, where the six-panel 
mechanism degenerates to a planar four-bar linkage which 
only has one DoF. 

      
Figure 8.  Projection of the lower triangular prism along the line BO. 

 

As shown in Fig. 8, we have 

𝜃𝜃!! = 2𝜋𝜋 − 𝛼𝛼!       (20) 

According to the cosine law, we have 

cos𝜃𝜃!# =
("?,)'4("?,)'51𝐵𝐵𝐵𝐵22222⃗ 1

'

"⋅("?,)⋅("?,)
      (21) 

where [𝐵𝐵𝐵𝐵NNNN⃗ [
"
= 2𝑙𝑙." − 2𝑙𝑙."cos𝛼𝛼!, so we have      
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𝜃𝜃!# = arccos E#
$
+ !

$
cos𝛼𝛼!F      (22) 

Since %𝐴𝐴𝐵𝐵(((((⃗ % = %𝐴𝐴𝐵𝐵(((((⃗ % = 𝑙𝑙0, %𝐼𝐼𝐵𝐵((((⃗ % = %𝐼𝐼𝐵𝐵((((⃗ % = 2𝑙𝑙0 ,	△ 𝐴𝐴𝐼𝐼𝐹𝐹 ≅	△ 𝐴𝐴𝐼𝐼𝐵𝐵, 
then 

𝜃𝜃!" = 𝜃𝜃!$ = 𝜋𝜋 − @&&
"
− @&-

"
= /&

"
−

ABCCDEF./01&( 4-(G

"
  (23) 

The whole mechanism is symmetric about the y-A-z plane as 
shown in Fig. 8, so we have  

𝜃𝜃"! = 𝜃𝜃"#        (24) 

In order to figure out 𝜃𝜃"! , the vector 𝐵𝐵𝐵𝐵NNNNNN⃗  should be 
calculated together with 𝐴𝐴𝐵𝐵NNNNN⃗ . Since	 𝐴𝐴𝐵𝐵 ⊥ 𝐵𝐵𝐴𝐴,𝐴𝐴𝐵𝐵 ⊥ 𝐵𝐵𝐵𝐵;	
𝑃𝑃𝐹𝐹 ⊥ 𝐹𝐹𝐴𝐴, 𝑃𝑃𝐹𝐹 ⊥ 𝐹𝐹𝐵𝐵; we have 𝐴𝐴𝐵𝐵 ⊥ 𝐵𝐵𝐴𝐴, 𝑃𝑃𝐹𝐹 ⊥ 𝐵𝐵𝐴𝐴, so  

𝐴𝐴𝐵𝐵NNNNN⃗ = 𝑘𝑘! ⋅ 𝐵𝐵𝐴𝐴NNNNNN⃗ × 𝐹𝐹𝑃𝑃NNNNN⃗        (25) 

where 𝑘𝑘! is a constant not equal to 0. 

𝐵𝐵𝐴𝐴NNNNNN⃗ = 𝒑𝒑" = 𝒑𝒑# − 𝒑𝒑! = :
−𝑙𝑙. cos

/&
"
sin𝛼𝛼"

−𝑙𝑙. sin
/&
"
sin𝛼𝛼"

−𝑙𝑙.cos𝛼𝛼"

B   (26) 

Besides, 𝐵𝐵𝐴𝐴 and 𝐹𝐹𝑃𝑃 are symmetric about the y-A-z plane, 
then we have 

cos(∠𝐷𝐷𝐴𝐴𝐼𝐼) =
123444444⃗ 61
723444444⃗ 7

= −
√$ :;<2"!  :;<,!<=>,!

|<=>,!|@:;<
2"
! @A$:;<

!2"
!  :;<

!,!B$:;<!
2"
! C$
	   

(27) 

where a𝐴𝐴𝐷𝐷NNNNN⃗ b
<
 is the projection length of 𝐴𝐴𝐷𝐷NNNNN⃗  along the y-axis.  

We can also calculate %𝐴𝐴𝐷𝐷(((((⃗ % by the cosine law, 

cos(𝜋𝜋 −∠𝐵𝐵𝐴𝐴𝐷𝐷) = 1𝐴𝐴𝐴𝐴2222⃗ 1
'
41𝐴𝐴𝐴𝐴22222⃗ 1

'
51𝐴𝐴𝐴𝐴2222⃗ 1

'

"⋅1𝐴𝐴𝐴𝐴2222⃗ 1⋅1𝐴𝐴𝐴𝐴22222⃗ 1
    (28) 

where 

K𝐴𝐴𝐴𝐴NNNNN⃗ K = K𝐴𝐴𝐴𝐴NNNNN⃗ Kcos
𝛼𝛼#
2 = 𝑙𝑙,cos

𝛼𝛼#
2  

K𝐴𝐴𝐿𝐿NNNNN⃗ K = K𝐼𝐼𝐴𝐴NNN⃗ K = DK𝐴𝐴𝐼𝐼NNNN⃗ K
'
− I

1
2
K𝐴𝐴𝐵𝐵NNNNN⃗ KJ

'

= D(2𝑙𝑙,)' − 0𝑙𝑙,sin
𝛼𝛼#
2 2

'
 

Combining Eqs. (27) and (28) and considering the length 
cannot be negative, %𝐴𝐴𝐷𝐷(((((⃗ % can be derived as 

[𝐴𝐴𝐵𝐵NNNNN⃗ [ = ?, ICDE/&5$ EJK'/'5$ CDE/&EJK'/'4L
I"5CDE/&EJK'/'5EJK'/'

+
?, EJK("/')(CDE/&4!)

"|EJK/'| I"CDE'/'4" CDE/&CDE'/'4EJK'/&EJK'/'
          (29) 

Then we have 

𝐴𝐴𝐵𝐵NNNNN⃗ = [𝐴𝐴𝐵𝐵NNNNN⃗ [ MN
222222⃗ ×PQ22222⃗

1MN222222⃗ ×PQ22222⃗ 1
=

⎣
⎢
⎢
⎢
⎡

0

−
R&CDE

1&
'  EJK("/') 

R'
 R&EJK/&EJK'/' 

R' ⎦
⎥
⎥
⎥
⎤
   (30) 

where 

𝜎𝜎# =
𝑙𝑙, Ucos𝛼𝛼# − 4 sin'𝛼𝛼' − 4 cos𝛼𝛼#sin'𝛼𝛼' + 7

U2 − cos𝛼𝛼#sin'𝛼𝛼' − sin'𝛼𝛼'
+
𝑙𝑙, sin(2𝛼𝛼')(cos𝛼𝛼# + 1)

2𝜎𝜎!|sin𝛼𝛼'| 
 

𝜎𝜎' = 𝜎𝜎!|sin𝛼𝛼'| 

𝜎𝜎! = U2 cos'𝛼𝛼' + 2 cos𝛼𝛼#cos'𝛼𝛼' + sin'𝛼𝛼#sin'𝛼𝛼' 

Besides, 𝐵𝐵𝐵𝐵NNNNNN⃗ = 𝐴𝐴𝐵𝐵NNNNN⃗ − 𝐴𝐴𝐵𝐵NNNNN⃗ , so	𝜃𝜃"! can be derived as 

𝜃𝜃34 = arccos Z
𝐵𝐵𝐵𝐵222222⃗ ⋅ ]−𝐴𝐴𝐵𝐵22222⃗ `
1𝐵𝐵𝐵𝐵222222⃗ 1 ⋅ 1−𝐴𝐴𝐵𝐵22222⃗ 1

a	

= arccos

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

√2 gcos 𝛼𝛼42  gcos
𝛼𝛼4
2 −

cos 𝛼𝛼42 sin(2𝛼𝛼3) k
𝜎𝜎4
𝜎𝜎3
+ 𝜎𝜎5n

𝜎𝜎#
o− cos𝛼𝛼3

2 + 1
2o

⎷
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
⃓⃓
r⃓

2  scos 𝛼𝛼42 −
cos 𝛼𝛼42 sin(2𝛼𝛼3) F

𝜎𝜎4
𝜎𝜎3
+ 𝜎𝜎5G

𝜎𝜎#
t

3

− cos𝛼𝛼4

+
2 sin3𝛼𝛼4 sin3𝛼𝛼3  k

𝜎𝜎4
𝜎𝜎3
+ sin(2𝛼𝛼3)(cos𝛼𝛼4 + 1)

2𝜎𝜎#
n
3

𝜎𝜎6
+ 1 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

          (31) 

where 

𝜎𝜎# = Ucos𝛼𝛼# − 4 sin'𝛼𝛼' − 4 cos𝛼𝛼#sin'𝛼𝛼' + 7 

𝜎𝜎' = U2 − cos𝛼𝛼#sin'𝛼𝛼' − sin'𝛼𝛼' 

𝜎𝜎! = |sin𝛼𝛼'| U𝜎𝜎) 

𝜎𝜎+ =
sin(2𝛼𝛼')(cos𝛼𝛼# + 1)

2 |sin𝛼𝛼'|U𝜎𝜎)
 

𝜎𝜎) = 2 cos'𝛼𝛼' + 2 cos𝛼𝛼#cos'𝛼𝛼' + sin'𝛼𝛼#sin'𝛼𝛼' 

To calculate 𝜃𝜃"" , we need to know the lengths of three 
sides in the triangle △𝑁𝑁𝑁𝑁𝑁𝑁. First, we have 

𝐴𝐴𝑁𝑁NNNNNN⃗ = 𝐴𝐴𝐴𝐴NNNNNN⃗ +
1
2𝐵𝐵𝐵𝐵
NNNNNN⃗ 	

=

⎣
⎢
⎢
⎢
⎢
⎡ ?,FEJK

1&
' 5" CDE

1&
'  EJK/'G

"

−
?,CDE

1&
'

"
− 𝑙𝑙. sin

/&
"
sin𝛼𝛼" −

R&CDE
1&
'  EJK("/') 

"R'
R&EJK/&EJK'/' 

"R'
− 𝑙𝑙.cos𝛼𝛼" ⎦

⎥
⎥
⎥
⎥
⎤

            (32) 

where  

𝜎𝜎# =
𝑙𝑙, Ucos𝛼𝛼# − 4 sin'𝛼𝛼' − 4 cos𝛼𝛼#sin'𝛼𝛼' + 7

U2 − cos𝛼𝛼#sin'𝛼𝛼' − sin'𝛼𝛼'
+
𝑙𝑙, sin(2𝛼𝛼')(cos𝛼𝛼# + 1)

2𝜎𝜎!|sin𝛼𝛼'|
 

𝜎𝜎' =  𝜎𝜎!|sin𝛼𝛼'| 

𝜎𝜎! = U2 cos'𝛼𝛼' + 2 cos𝛼𝛼#cos'𝛼𝛼' + sin'𝛼𝛼#sin'𝛼𝛼' 

Since 𝐴𝐴𝐴𝐴((((((⃗  and 𝐴𝐴𝐴𝐴(((((⃗  are symmetric about the y-A-z plane, we 
have 

%𝐴𝐴𝐴𝐴((((((⃗ % = %𝐴𝐴𝐴𝐴(((((⃗ − 𝐴𝐴𝐴𝐴((((((⃗ % = 𝑙𝑙+ Gsin
,"
$
− 2 cos ,"

$
sin𝛼𝛼$G   (33) 

According to the cosine law in △𝑁𝑁𝑁𝑁𝑁𝑁, we have 

cos𝜃𝜃"" =
1𝐽𝐽𝐽𝐽2222⃗ 1

'
41𝐽𝐽𝐽𝐽2222⃗ 1

'
51xy222222⃗ 1

'

"⋅1𝐽𝐽𝐽𝐽2222⃗ 1⋅1𝐽𝐽𝐽𝐽2222⃗ 1
      (34) 

where %𝐽𝐽𝐴𝐴((((⃗ % = %𝐽𝐽𝐴𝐴((((⃗ % = 𝑙𝑙+, further 

𝜃𝜃"" = 𝜋𝜋 − arccos m
FEJK1&' 5" CDE

1&
'  EJK/'G

'

"
− 1n   (35) 

Therefore, Eqs. (7), (13), (19), (20), (22), (23), (24), (31) and 
(35) form the whole kinematic equation set of two triangular 
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prisms with altered vertices, which shows that the group has 
two independent inputs indicating 2 DoF. 

IV. COMPATIBILITY ANALYSIS OF THE ALTERED AUXETIC 
METAMATERIAL 

A pair of double triangular prism groups as the one shown 
in Fig. 6(b) compose the metamaterial as shown in Fig. 9.  
Denoting the two prism groups of the whole structure as  𝑆𝑆z 
and 𝑆𝑆{, the compatible conditions of the whole structure are 
that the size lengths of the two groups are equal and 

𝜃𝜃!z = 𝜃𝜃"{ , 𝜃𝜃"z = 𝜃𝜃!{      (36) 

where 𝜃𝜃!z and 𝜃𝜃"z are defined as the assembly angles.  

 
Figure 9.  The two groups in exploded and assembled views. 

The relationship between the folding angles 𝛼𝛼!z  and 𝛼𝛼"z , 
and the assembly angles  𝜃𝜃!z and 𝜃𝜃"z are presented in Fig. 10. 
Once the folding angles 𝛼𝛼!z  and 𝛼𝛼"z  are given, the assembly 
angle 𝜃𝜃!z, which equals to 𝜃𝜃!#, can be calculated using Eq. (22) 
by replacing 𝛼𝛼!	with 𝛼𝛼!z. 

 
Figure 10. Relationship between the configuration angles and assembly 
angles. 

To derive the assembly angle 𝜃𝜃"z, we need to figure out the 
vectors 𝐵𝐵𝐵𝐵NNNNNN⃗  and 𝐵𝐵𝐷𝐷NNNN⃗  first. For 𝐵𝐵𝐵𝐵NNNNNN⃗ , we have 

𝐵𝐵𝐵𝐵NNNNNN⃗ =

⎣
⎢
⎢
⎢
⎢
⎡ −𝑙𝑙.sin

/&
2

"

𝑙𝑙.cos
/&2

"
−

R&CDE
1&
2

'  EJK("/'
2) 

R'
R&EJK/&2 EJK'/'2 

R' ⎦
⎥
⎥
⎥
⎥
⎤

    (37) 

where 
𝜎𝜎4 =

𝑙𝑙7 0cos𝛼𝛼48 − 4sin3𝛼𝛼38 − 4cos𝛼𝛼48sin3𝛼𝛼38 + 7

02 − cos𝛼𝛼48sin3𝛼𝛼38 − sin3𝛼𝛼38
+
𝑙𝑙7 sin(2𝛼𝛼38)(cos𝛼𝛼48 + 1)

2𝜎𝜎#|sin𝛼𝛼38| 
 

𝜎𝜎' =  𝜎𝜎!|sin𝛼𝛼'-| 

𝜎𝜎! = Y2 cos'𝛼𝛼'- + 2 cos𝛼𝛼#-  cos'𝛼𝛼'- + sin'𝛼𝛼#-  sin'𝛼𝛼'- 

𝐵𝐵𝐷𝐷NNNN⃗  can be derived as 

𝐵𝐵𝐷𝐷NNNN⃗ = 𝐴𝐴𝐷𝐷NNNN⃗ − 𝐴𝐴𝐵𝐵NNNNN⃗ = [𝐴𝐴𝐼𝐼NNN⃗ [ ⋅ [0,1,0]= − 𝒑𝒑! =

⎣
⎢
⎢
⎢
⎡ −𝑙𝑙.sin

/&
2

"

√" ?,|CDE/&24L

"
0 ⎦

⎥
⎥
⎥
⎤
  

 (38) 
So we have 

cos𝜃𝜃"z =
M}222222⃗ ⋅M~2222⃗

1M}222222⃗ 1⋅1M~2222⃗ 1
        (39) 

Further 

𝜃𝜃'- = arccos

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

√2 0√2 𝜎𝜎#Ucos𝛼𝛼#- + 7 − cos𝛼𝛼#- + 12

4 _

2 𝜎𝜎#' − cos𝛼𝛼#-

+
2sin'𝛼𝛼#-sin'𝛼𝛼'- I𝜎𝜎' +

 sin(2𝛼𝛼'-)(cos𝛼𝛼#- + 1)
2𝜎𝜎!

J
'

𝜎𝜎+
+ 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 (40) 

where 

𝜎𝜎# = cos
𝛼𝛼#-

2 −
cos 𝛼𝛼#

-

2 sin(2𝛼𝛼'-) I𝜎𝜎' +
sin(2𝛼𝛼'-)(cos𝛼𝛼#- + 1)

2 |sin𝛼𝛼'-| √𝜎𝜎+
J

𝜎𝜎!
 

𝜎𝜎' =
Ucos𝛼𝛼#- − 4sin'𝛼𝛼'- − 4cos𝛼𝛼#-sin'𝛼𝛼'- + 7

U2 − cos𝛼𝛼#-sin'𝛼𝛼'- − sin'𝛼𝛼'-
 

𝜎𝜎! = |sin𝛼𝛼'-| U𝜎𝜎+ 
𝜎𝜎+ = 2 cos'𝛼𝛼'- + 2 cos𝛼𝛼#-cos'𝛼𝛼'- + sin'𝛼𝛼#-  sin'𝛼𝛼'- 
 

Once the compatible conditions in Eq. (36) are satisfied, 
the whole metamaterial can conduct a rigid folding. The 
altered auxetic model is presented in Fig. 11 with its motion 
process demonstrated in Fig. 12. It can be found that the whole 
structure squeezes in all directions, indicating the auxetic 
property of the unit cell with a negative Poisson’s ratio.  

 
         Top view                        Front view                   Right-side view  
Figure 11. Orthographic views of the altered auxetic metamaterial. 
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Figure 12. Rigid folding process of the altered auxetic metamaterial. 

 

V. CONCLUSION 
In this paper, we conducted the rigid foldability analysis of 

a transformable, flat-foldable shape – designed in 1996 by the 
Italian topology researcher Giorgio Scarpa – through the 
kinematic analysis of its vertices. It is found that the design, 
consisting of a prismatic tetrahedron with additional bisecting 
hinges on the walls of the extruded prisms, is not rigidly 
foldable. The flat folding occurs due to the deformation along 
the creases of the model. Eight additional diagonal creases 
were added to the model to create an altered auxetic 
metamaterial, with two pairs of symmetric creases added to 
the central vertices and two pairs added to the corner vertices. 
The altered model was proved to be rigidly foldable with 
detailed kinematic modeling and compatibility analysis. The 
altered metamaterial, while introducing the rigid foldability, 
preserved the flat-foldability, the load-bearing capacity, and 
the auxetic property. The basic unit model can be tessellated 
to form large-scale metamaterials with high load-bearing 
capacity and ease of storage and transportation, which has 
great potential applications in lightweight sheltering, 
sustainable furniture and building substrates. The thickness of 
the plates needs to be accommodated by the creases in further 
applications.  
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